找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Analysis with Applications to Number Theory; Tarlok Nath Shorey Textbook 2020 Springer Nature Singapore Pte Ltd. 2020 Cauchy Theor

[复制链接]
楼主: 味觉没有
发表于 2025-3-25 04:56:40 | 显示全部楼层
发表于 2025-3-25 10:52:18 | 显示全部楼层
发表于 2025-3-25 13:20:11 | 显示全部楼层
发表于 2025-3-25 17:54:34 | 显示全部楼层
The Prime Number Theorem with an Error Term,Rewriting PNT as ., it is clear from Theorem . that . is a better approximation than . to .. We have given a proof of PNT in the previous chapter by a method different from that of J. Hadamard and de la Vallée Poussin.
发表于 2025-3-25 22:50:50 | 显示全部楼层
发表于 2025-3-26 03:03:57 | 显示全部楼层
The Baker Theorem,A complex number . is called .  if there exists a non-zero polynomial . such that . and . if . such that .(.) is monic and .. In fact . satisfies the unique polynomial .(.) of minimal degree with relatively prime integer coefficients such that the leading coefficient of . is positive.
发表于 2025-3-26 07:28:17 | 显示全部楼层
Complex Analysis with Applications to Number Theory978-981-15-9097-9Series ISSN 2363-6149 Series E-ISSN 2363-6157
发表于 2025-3-26 09:02:32 | 显示全部楼层
Introduction and Simply Connected Regions,ce. We introduce the notion of connectedness in Sect. 1.2, and we show in Theorem . that an open set in a metric space is a disjoint union of open connected sets which we call .. Further, we prove Theorem . in Sect. 1.3 that the extended complex plane is a metric space homeomorphic to the Riemann sp
发表于 2025-3-26 13:53:59 | 显示全部楼层
Harmonic Functions,unction are harmonic. We prove the existence of a harmonic conjugate of a harmonic function in a simply connected region in Sect. 4.4 where we also prove its converse. We introduce continuous functions with Mean Value Property in a region . in Sect. 4.5 and prove in Sect. 4.5 Maximum principle for h
发表于 2025-3-26 17:12:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 12:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表