找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex Analysis; A Functional Analysi D. H. Luecking,L. A. Rubel Textbook 1984 Springer-Verlag New York Inc. 1984 Analysis.Funktionalanaly

[复制链接]
楼主: CYNIC
发表于 2025-3-30 12:08:50 | 显示全部楼层
发表于 2025-3-30 16:13:54 | 显示全部楼层
,Runge’s Theorem,If f ∈ .(G), G a connected open set, it is a consequence of the power series expansion for holomorphic functions that if f(z.) = 0, z. → z. ∈ G then f = 0 in G. It is also a consequence that if f.(z.) = 0 for n = 0,1,2,…, then f = 0 in G. We adopt conventions about “sets with multiplicity” that allow us to treat both cases as one.
发表于 2025-3-30 17:31:46 | 显示全部楼层
发表于 2025-3-30 23:02:12 | 显示全部楼层
The Riemann Mapping Theorem,The Riemann Mapping Theorem implies that, as far as . can tell, all simply connected regions are the “same”. To clarify what this means we need the following notion of equivalence.
发表于 2025-3-31 01:11:26 | 显示全部楼层
发表于 2025-3-31 08:05:17 | 显示全部楼层
Dual Space Topologies,This chapter is intended as a prerequisite for later chapters. In it we introduce a topology on the dual of a topological vector space. We present some of the standard results in the theory of Fréchet spaces and some additional results on topological vector spaces in general.
发表于 2025-3-31 11:09:45 | 显示全部楼层
Universitexthttp://image.papertrans.cn/c/image/231343.jpg
发表于 2025-3-31 13:42:40 | 显示全部楼层
Preliminaries: Set Theory and Topology,tion of a family of sets, set difference (AB), complement (compl A), Cartesian product; functions, domain, range, one-to-one, onto, image, inverse, restriction; partial ordering, linear (or total) ordering, and equivalence relation.
发表于 2025-3-31 18:27:20 | 显示全部楼层
发表于 2025-3-31 23:33:24 | 显示全部楼层
,Duality of ,(G)—The Case of the Unit Disc,of seminorms. For each non-empty finite set A = {‖•‖., ‖•‖.,…, ‖•‖.} ⊂ ., define., x ∈ E. Then ‖•‖. is a seminorm. Let . = . ∪ {‖•‖.: A is a non empty finite subset of .}; then . and . generate the same topology on E (Exercise 2). Consequently, we may assume . = . in the following proposition.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 17:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表