找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complements of Higher Mathematics; Marin Marin,Andreas Öchsner Book 2018 Springer International Publishing AG, part of Springer Nature 201

[复制链接]
楼主: 皱纹
发表于 2025-3-23 10:00:20 | 显示全部楼层
M. Sulprizio,R. Löw,B. Schulte-Frei,L. JägerConsider the semi-plane .. The complex function . defined by .is called the Euler’s function of first species.
发表于 2025-3-23 16:00:20 | 显示全部楼层
U. Korsten-Reck,C. Velde,M. SulprizioConsider the trigonometrical series of the following form .Since the functions . and . are periodical functions having the period . we say that the series (.) is a ..
发表于 2025-3-23 19:02:43 | 显示全部楼层
https://doi.org/10.1007/978-3-662-48760-0Let . be a bounded domain in the .dimensional Euclidean space .. The general form of a partial differential equation is: . where by . we have denoted partial derivatives ..
发表于 2025-3-23 22:15:17 | 显示全部楼层
https://doi.org/10.1007/978-3-662-67952-4The main representative of hyperbolical equations is considered to be the equation of the vibrating chord, also called the equation of waves.
发表于 2025-3-24 03:53:18 | 显示全部楼层
https://doi.org/10.1007/978-3-662-67952-4Let us consider the three-dimensional regular domain . bounded by the Liapunov surface .. In the classical mathematical analysis the following formula is proved which is called the ..
发表于 2025-3-24 08:07:30 | 显示全部楼层
发表于 2025-3-24 12:48:09 | 显示全部楼层
发表于 2025-3-24 16:02:42 | 显示全部楼层
,Fourier’s Transform,Consider the trigonometrical series of the following form .Since the functions . and . are periodical functions having the period . we say that the series (.) is a ..
发表于 2025-3-24 20:06:24 | 显示全部楼层
Quasi-linear Equations,Let . be a bounded domain in the .dimensional Euclidean space .. The general form of a partial differential equation is: . where by . we have denoted partial derivatives ..
发表于 2025-3-25 03:13:09 | 显示全部楼层
Hyperbolical Equations,The main representative of hyperbolical equations is considered to be the equation of the vibrating chord, also called the equation of waves.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 00:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表