找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Comparison Finsler Geometry; Shin-ichi Ohta Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[复制链接]
楼主: 刘兴旺
发表于 2025-3-26 23:18:57 | 显示全部楼层
发表于 2025-3-27 04:16:58 | 显示全部楼层
发表于 2025-3-27 08:24:32 | 显示全部楼层
发表于 2025-3-27 11:09:07 | 显示全部楼层
Properties of Geodesicstion for the energy functional. To this end, some important quantities such as the fundamental and Cartan tensors are introduced. We will see that the metric definition of geodesics coincides with the variational definition as solutions to the geodesic equation. We also prove the Finsler analogue of the Hopf–Rinow theorem.
发表于 2025-3-27 14:54:41 | 显示全部楼层
Examples of Finsler Manifolds introduce Berwald spaces, Hilbert and Funk geometries, and Teichmüller spaces and discuss their characteristic properties..We will revisit some of these examples in Chap. . in the context of measured Finsler manifolds (i.e., Finsler manifolds equipped with measures).
发表于 2025-3-27 20:44:07 | 显示全部楼层
发表于 2025-3-28 01:12:09 | 显示全部楼层
https://doi.org/10.1007/978-3-030-80650-7Finsler geometry; Finsler manifolds; Introduction to Finsler geometry; Comparison geometry in Finsler c
发表于 2025-3-28 05:10:22 | 显示全部楼层
发表于 2025-3-28 09:57:13 | 显示全部楼层
Donald J. Rose,Ralph A. WilloughbyIn this chapter, as a warm-up before the general theory of Finsler manifolds, we consider normed spaces and discuss some characterizations of inner product spaces among normed spaces. These special properties of inner product spaces will help us to understand the difference between Riemannian and Finsler manifolds.
发表于 2025-3-28 10:47:54 | 显示全部楼层
Gary H. Glaser,Michael S. SalibaIn this chapter, we begin with Minkowski normed spaces which appear as tangent spaces of Finsler manifolds, and recall Euler’s homogeneous function theorem as an important calculus tool throughout the book. Then we give the definition of a Finsler manifold, followed by some examples and a naturally induced (asymmetric) distance structure.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 01:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表