找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Compact Lie Groups; Mark R. Sepanski Textbook 2007 Springer-Verlag New York 2007 Group theory.Lie algebra.Representation theory.algebra.ca

[复制链接]
楼主: 补给线
发表于 2025-3-23 13:27:30 | 显示全部楼层
发表于 2025-3-23 17:23:01 | 显示全部楼层
Lie Algebras,ce to the identity. The resulting object is called a Lie algebra. Simply by virtue of the fact that vector spaces are simpler than groups, the Lie algebra provides a powerful tool for studying Lie groups and their representations.
发表于 2025-3-23 20:12:29 | 显示全部楼层
发表于 2025-3-23 22:19:02 | 显示全部楼层
Highest Weight Theory, Two important problems remain. The first is to parametrize Ĝ in a reasonable manner and the second is to individually construct each irreducible representation in a natural way. The solution to both of these problems is closely tied to the notion of . weights.
发表于 2025-3-24 05:32:35 | 显示全部楼层
发表于 2025-3-24 07:25:36 | 显示全部楼层
发表于 2025-3-24 12:50:49 | 显示全部楼层
发表于 2025-3-24 15:54:52 | 显示全部楼层
https://doi.org/10.1007/978-3-322-94211-1By examining the joint eigenvalues of a Cartan subalgebra under the ad-action, a great deal of information about a Lie group and its Lie algebra may be encoded. For instance, the fundamental group can be read off from this data (§ 6.3.3). Moreover, this encoding is a key step in the classification of irreducible representations (§7).
发表于 2025-3-24 19:06:35 | 显示全部楼层
发表于 2025-3-25 00:27:18 | 显示全部楼层
Representations,Lie groups are often the abstract embodiment of symmetry. However, most frequently they manifest themselves through an action on a vector space which will be called a representation. In this chapter we confine ourselves to the study of finite-dimensional representations.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-9 14:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表