找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Commutative Algebra; with a View Toward A David Eisenbud Textbook 1995 Springer Science+Business Media New York 1995 Algebraic Geometry.alg

[复制链接]
楼主: 女孩
发表于 2025-3-26 22:09:23 | 显示全部楼层
发表于 2025-3-27 02:41:46 | 显示全部楼层
发表于 2025-3-27 07:26:27 | 显示全部楼层
Fundamental Definitions of Dimension Theoryoved earlier in this book, before we had the language to describe them: the characterization of dimension zero from Chapter 2 and the properties of integral maps (relative dimension zero) from Chapter 4. To make this chapter and what follows independent of the introductory Chapter 8, we repeat a few definitions.
发表于 2025-3-27 13:31:15 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-5350-1Algebraic Geometry; algebra; algebraic geometry; category theory; cohomology; colimit; commutative algebra
发表于 2025-3-27 16:34:30 | 显示全部楼层
978-0-387-94269-8Springer Science+Business Media New York 1995
发表于 2025-3-27 21:37:47 | 显示全部楼层
Textbook 1995wards algebraic geometry. The author presents a comprehensive view of commutative algebra, from basics, such as localization and primary decomposition, through dimension theory, differentials, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connectio
发表于 2025-3-27 21:57:53 | 显示全部楼层
https://doi.org/10.1007/978-94-010-3670-2ld and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
发表于 2025-3-28 03:48:42 | 显示全部楼层
发表于 2025-3-28 06:18:40 | 显示全部楼层
Completions and Hensel’s Lemmald and . = .[., …, .]/., then the completion of . with respect to . = (., …, .) is the ring .[[., …, .]]//.[[., …, .]]. General completions can similarly be defined in terms of formal power series (Exercise 7.11), but we shall give an intrinsic development.
发表于 2025-3-28 12:40:25 | 显示全部楼层
Dimension and Codimension Onend some consequences of normality, including a bit of the theory of Dedekind domains; study the length of a one-dimensional ring modulo a principal ideal; and prove that the integral closure of a one-dimensional Noetherian domain is Noetherian.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 20:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表