找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorics on Words; 13th International C Thierry Lecroq,Svetlana Puzynina Conference proceedings 2021 Springer Nature Switzerland AG 20

[复制链接]
楼主: 战神
发表于 2025-3-28 17:11:14 | 显示全部楼层
发表于 2025-3-28 22:44:47 | 显示全部楼层
Kaan Yıldızgöz,Hüseyin Murat Çelik. is a non-erasing morphism. A pattern . is said to be .-avoidable if there exists an infinite word over a .-letter alphabet that avoids .. A pattern is . if every variable occurs at least twice. Doubled patterns are known to be 3-avoidable. Currie, Mol, and Rampersad have considered a generalized n
发表于 2025-3-29 02:11:53 | 显示全部楼层
S. Christalin Nelson,J. Dhiviya Roseeftmost 1 with the bit to its right. Flip-swap languages model many combinatorial objects including necklaces, Lyndon words, prefix normal words, left factors of .-ary Dyck words, and feasible solutions to 0-1 knapsack problems. We prove that any flip-swap language forms a cyclic 2-Gray code when li
发表于 2025-3-29 04:30:50 | 显示全部楼层
Jagana Bihari Padhy,Bijayananda Patnaik factor. We consider equations in the so-called .-binomial monoid defined by the .-binomial equivalence relation on words. We remark that the .-binomial monoid possesses the compactness property, namely, any system of equations has a finite equivalent subsystem. We further show an upper bound, depen
发表于 2025-3-29 07:53:55 | 显示全部楼层
发表于 2025-3-29 14:01:55 | 显示全部楼层
978-3-030-85087-6Springer Nature Switzerland AG 2021
发表于 2025-3-29 18:43:58 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/230055.jpg
发表于 2025-3-29 23:40:11 | 显示全部楼层
Synchronized Sequences,f words. Moreover, if sequence is synchronized, then one can use a theorem-prover such as . to “automatically” prove many results about it, with little human intervention. In this paper I will prove some of the basic properties of synchronization, and give a number of applications to combinatorics on words.
发表于 2025-3-30 00:03:17 | 显示全部楼层
发表于 2025-3-30 07:32:55 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 14:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表