找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[复制链接]
楼主: GUST
发表于 2025-3-25 03:35:59 | 显示全部楼层
https://doi.org/10.1007/978-981-16-6879-1This chapter describes a series of combinatorial objects including Hadamard matrices, Latin hypercubes, association schemes, and partially ordered sets. The algebraic and combinatorial properties of these objects are discussed.
发表于 2025-3-25 08:25:12 | 显示全部楼层
发表于 2025-3-25 13:13:03 | 显示全部楼层
发表于 2025-3-25 19:53:15 | 显示全部楼层
Sèmévo Ida Tognisse,Jules DegilaThis chapter introduces a version of the well-known Tic-Tac-Toe game which can be played on designs and finite geometries. This game helps develop students’ geometric intuition. The theory of combinatorial games is applied to determine when the first player has a winning strategy and when the second player can force a draw.
发表于 2025-3-25 23:54:15 | 显示全部楼层
https://doi.org/10.1007/978-981-19-2764-5Early in the text we encountered the following diagram.
发表于 2025-3-26 00:15:46 | 显示全部楼层
发表于 2025-3-26 05:37:29 | 显示全部楼层
发表于 2025-3-26 11:47:20 | 显示全部楼层
Affine and Projective Planes,This chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
发表于 2025-3-26 15:44:05 | 显示全部楼层
发表于 2025-3-26 17:31:03 | 显示全部楼层
Higher Dimensional Finite Geometry,This chapter gives a basic introduction of linear algebra and uses this setting to describe higher dimensional affine and projective geometries. It includes proofs of the Bruck–Ryser theorem and Desargues’ theorem. It further describes Baer subplanes, arcs, and ovals. It concludes with a description of certain non-Desarguesian planes.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 13:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表