找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorics and Complexity of Partition Functions; Alexander Barvinok Book 2016 Springer International Publishing AG 2016 algorithms.com

[复制链接]
查看: 53313|回复: 42
发表于 2025-3-21 18:17:25 | 显示全部楼层 |阅读模式
书目名称Combinatorics and Complexity of Partition Functions
编辑Alexander Barvinok
视频videohttp://file.papertrans.cn/231/230042/230042.mp4
概述Contains an exposition of recent results.Demonstrates a unified approach to hard algorithmic problems.Provides an easy to read introduction to statistical physics phenomena.Includes supplementary mate
丛书名称Algorithms and Combinatorics
图书封面Titlebook: Combinatorics and Complexity of Partition Functions;  Alexander Barvinok Book 2016 Springer International Publishing AG 2016 algorithms.com
描述.Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial  structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems. .The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay. The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates. .
出版日期Book 2016
关键词algorithms; complexity; partition function; permanent; mathing polynomial; independence polynomial; graph
版次1
doihttps://doi.org/10.1007/978-3-319-51829-9
isbn_softcover978-3-319-84751-1
isbn_ebook978-3-319-51829-9Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Combinatorics and Complexity of Partition Functions影响因子(影响力)




书目名称Combinatorics and Complexity of Partition Functions影响因子(影响力)学科排名




书目名称Combinatorics and Complexity of Partition Functions网络公开度




书目名称Combinatorics and Complexity of Partition Functions网络公开度学科排名




书目名称Combinatorics and Complexity of Partition Functions被引频次




书目名称Combinatorics and Complexity of Partition Functions被引频次学科排名




书目名称Combinatorics and Complexity of Partition Functions年度引用




书目名称Combinatorics and Complexity of Partition Functions年度引用学科排名




书目名称Combinatorics and Complexity of Partition Functions读者反馈




书目名称Combinatorics and Complexity of Partition Functions读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:05:29 | 显示全部楼层
Smart Systems Integration and Simulationcs as they compute certain integrals and to computer science as they occupy a special place in the computational complexity hierarchy. This is our first example of a partition function and we demonstrate in detail how various approaches work. Connections with .-stable polynomials lead, in particular
发表于 2025-3-22 03:08:37 | 显示全部楼层
发表于 2025-3-22 08:32:57 | 显示全部楼层
发表于 2025-3-22 09:56:38 | 显示全部楼层
Smart E-Health Home Supervision Systemsolynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
发表于 2025-3-22 14:46:27 | 显示全部楼层
https://doi.org/10.1007/978-3-319-51829-9algorithms; complexity; partition function; permanent; mathing polynomial; independence polynomial; graph
发表于 2025-3-22 18:55:23 | 显示全部楼层
978-3-319-84751-1Springer International Publishing AG 2016
发表于 2025-3-22 21:14:39 | 显示全部楼层
Combinatorics and Complexity of Partition Functions978-3-319-51829-9Series ISSN 0937-5511 Series E-ISSN 2197-6783
发表于 2025-3-23 03:06:54 | 显示全部楼层
Smart E-Health Home Supervision Systemsolynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
发表于 2025-3-23 06:27:25 | 显示全部楼层
Partition Functions of Integer Flows,olynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 17:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表