找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorial Methods in Density Estimation; Luc Devroye,Gábor Lugosi Book 2001 Springer-Verlag New York, Inc. 2001 Density Estimation.Lik

[复制链接]
楼主: Traction
发表于 2025-3-28 18:35:32 | 显示全部楼层
Combinatorial Tools,Consider a class . of subsets of .., and let ..,…,.. ∈ .. be arbitrary points. Recall from the previous chapter that properties of the finite set .(..) ⊂ {0, 1}. defined by . play an essential role in bounding uniform deviations of the empirical measure.
发表于 2025-3-28 21:43:04 | 显示全部楼层
发表于 2025-3-29 01:18:29 | 显示全部楼层
发表于 2025-3-29 06:59:03 | 显示全部楼层
The Transformed Kernel Estimate,The transformed kernel estimate on the real line was introduced in an attempt to reduce the .. error in a relatively cheap manner. The data are first transformed . : . → . by a strictly monotonically increasing almost everywhere differentiable transformation .: .. = .(..),…,.. = .(..). The density of .. is . where .. denotes the inverse of ..
发表于 2025-3-29 07:25:04 | 显示全部楼层
发表于 2025-3-29 11:49:24 | 显示全部楼层
发表于 2025-3-29 17:36:47 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-1379-4le combinatorial calculations. The aim of this and the following two chapters is to equip the reader with these simple tools. We keep the material at an elementary level, with additional information added in the exercises.
发表于 2025-3-29 22:37:29 | 显示全部楼层
Slow Potential Changes in the Human Brain). More precisely, given the sample .., …, .. distributed according to density ., we are asked to construct a density estimate .. such that . This simple problem turns out to be surprisingly difficult, even if the estimates .. and .. are fixed densities, not depending on the data.
发表于 2025-3-30 02:24:19 | 显示全部楼层
发表于 2025-3-30 08:05:16 | 显示全部楼层
S. E. G. Nilsson,O. Textorius,E. Welindero construct a density estimate .. whose .. error is (almost) as small as that of the best estimate among the .., . ∈ Θ. Applying the minimum distance estimate of Chapter 5 directly to this class is often problematic because of the dependence of each estimate in the class and the empirical measure ...
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表