找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorial Matrix Theory and Generalized Inverses of Matrices; Ravindra B. Bapat,Steve J. Kirkland,Simo Puntanen Book 2013 Springer Ind

[复制链接]
楼主: melancholy
发表于 2025-3-30 08:46:40 | 显示全部楼层
发表于 2025-3-30 13:19:15 | 显示全部楼层
发表于 2025-3-30 16:50:00 | 显示全部楼层
Matrix Product of Graphs,In this paper, we characterize the graphs . and . for which the product of the adjacency matrices .(.).(.) is graphical. We continue to define matrix product of two graphs and study a few properties of the same product. Further, we consider the case of regular graphs to study the graphical property of the product of adjacency matrices.
发表于 2025-3-30 22:02:13 | 显示全部楼层
Inference in Error Orthogonal Models,Error Orthogonal Models constitute a very interesting class of models very useful in the design of experiments. The use of commutative Jordan algebras of symmetric matrices is used in order to perform statistical inference. The concept of segregation is introduced thus allowing the estimation of variance components.
发表于 2025-3-31 03:29:03 | 显示全部楼层
发表于 2025-3-31 05:36:51 | 显示全部楼层
Sliding on Clean (Dry) Surfaces,weighted directed graph is obtained. It is a generalization of the formula for the determinant of the Laplacian matrix of a mixed graph obtained by Bapat et al. (Linear Multilinear Algebra 46:299–312, .).
发表于 2025-3-31 10:18:30 | 显示全部楼层
发表于 2025-3-31 15:09:26 | 显示全部楼层
发表于 2025-3-31 17:37:20 | 显示全部楼层
https://doi.org/10.1007/978-3-642-03448-0of writing a square matrix as a sum of idempotent matrices. Much work was done for real matrices and for matrices over other algebraic structures. We shall consider some of this work and present some new results for matrices over projective free rings.
发表于 2025-3-31 23:26:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 08:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表