找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorial Algorithms; 24th International W Thierry Lecroq,Laurent Mouchard Conference proceedings 2013 Springer-Verlag Berlin Heidelber

[复制链接]
查看: 44720|回复: 62
发表于 2025-3-21 17:50:59 | 显示全部楼层 |阅读模式
书目名称Combinatorial Algorithms
副标题24th International W
编辑Thierry Lecroq,Laurent Mouchard
视频videohttp://file.papertrans.cn/230/229887/229887.mp4
概述Up-to-date results.State-of-the-art research.Fast-track conference proceedings
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Combinatorial Algorithms; 24th International W Thierry Lecroq,Laurent Mouchard Conference proceedings 2013 Springer-Verlag Berlin Heidelber
描述This book constitutes the thoroughly refereed post-workshop proceedings of the 24th International Workshop on Combinatorial Algorithms, IWOCA 2013, held in Rouen, France, in July 2013. The 33 revised full papers presented together with 10 short papers and 5 invited talks were carefully reviewed and selected from a total of 91 submissions. The papers are organized in topical sections on algorithms on graphs; algorithms on strings; discrete geometry and satisfiability.
出版日期Conference proceedings 2013
关键词approximation algorithm; distributed computing; integer programming; planar graph; self-stabilizing algo
版次1
doihttps://doi.org/10.1007/978-3-642-45278-9
isbn_softcover978-3-642-45277-2
isbn_ebook978-3-642-45278-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

书目名称Combinatorial Algorithms影响因子(影响力)




书目名称Combinatorial Algorithms影响因子(影响力)学科排名




书目名称Combinatorial Algorithms网络公开度




书目名称Combinatorial Algorithms网络公开度学科排名




书目名称Combinatorial Algorithms被引频次




书目名称Combinatorial Algorithms被引频次学科排名




书目名称Combinatorial Algorithms年度引用




书目名称Combinatorial Algorithms年度引用学科排名




书目名称Combinatorial Algorithms读者反馈




书目名称Combinatorial Algorithms读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:39:29 | 显示全部楼层
On Maximum Rank Aggregation Problemse expressed by permutations, whose distance can be measured in many ways..In this work we study a collection of distances, including the Kendall tau, Spearman footrule, Spearman rho, Cayley, Hamming, Ulam, and Minkowski distances, and compute the consensus against the maximum, which attempts to mini
发表于 2025-3-22 00:34:25 | 显示全部楼层
Deciding Representability of Sets of Words of Equal Length in Polynomial Timee words. Recently, the computational problem of representing subsets of .. by ., which are sequences that may have holes that match each letter of ., was considered and shown to be in .. However, membership in . remained open. In this paper, we show that deciding if a subset is representable can be
发表于 2025-3-22 05:10:27 | 显示全部楼层
Prefix Table Construction and ConversionIn this paper we describe and evaluate algorithms for prefix table construction, some previously proposed, others designed by us. We also describe and evaluate new linear-time algorithms for transformations between . and the ..
发表于 2025-3-22 09:52:02 | 显示全部楼层
On the Approximability of Splitting-SAT in 2-CNF Horn Formulas, we ask for a minimum-size set of variables to be split in order to make the formula satisfiable. This problem is known to be APX-hard, even for 2-CNF formulas. We consider the case of 2-CNF Horn formulas, i.e., 2-CNF formulas without positive 2-clauses, and prove that this problem is APX-hard as w
发表于 2025-3-22 13:28:00 | 显示全部楼层
Boundary-to-Boundary Flows in Planar Graphshm uses only .(.) queries to simple data structures, achieving an .(. log.) running time that we expect to be practical given the use of simple primitives. The only existing algorithm for this problem uses divide and conquer and, in order to achieve an .(. log.) running time, requires the use of the
发表于 2025-3-22 18:47:04 | 显示全部楼层
Exact Algorithms for Weak Roman Domination .: . → {0,1,2} such that every vertex . ∈ . is . (. there exists a neighbor . of ., possibly . = ., such that .) and for every vertex . ∈ . with .(.) = 0 there exists a neighbor . of . such that . and the function .. defined by:. does not contain any undefended vertex. The . of a wrd-function . is
发表于 2025-3-23 00:24:38 | 显示全部楼层
发表于 2025-3-23 02:06:31 | 显示全部楼层
发表于 2025-3-23 06:25:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 18:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表