找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorial Algorithms; 28th International W Ljiljana Brankovic,Joe Ryan,William F. Smyth Conference proceedings 2018 Springer Internatio

[复制链接]
楼主: legerdemain
发表于 2025-3-28 17:58:13 | 显示全部楼层
Improved Complexity for Power Edge Set Problem. We show that . remains .-hard in planar graphs with degree at most five. This result is extended to bipartite planar graphs with degree at most six. We also show that . is hard to approximate within a factor lower than . in the bipartite case (resp. .), unless ., (resp. under .). We also show that
发表于 2025-3-28 22:12:06 | 显示全部楼层
发表于 2025-3-29 00:18:43 | 显示全部楼层
发表于 2025-3-29 03:39:55 | 显示全部楼层
Holes in 2-Convex Point Setsygon with . vertices from . and no points of . in its interior. For a positive integer ., a simple polygon . is . if no straight line intersects the interior of . in more than . connected components. A point set . is . if there exists an .-convex polygonization of ...Considering a typical Erdős–Szek
发表于 2025-3-29 09:14:02 | 显示全部楼层
发表于 2025-3-29 15:10:57 | 显示全部楼层
发表于 2025-3-29 18:46:35 | 显示全部楼层
On the Maximum Crossing Numberum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.
发表于 2025-3-29 23:27:24 | 显示全部楼层
Approximation Results for the Incremental Knapsack Problemural assumption that each item can be packed in the first time period. For this variant, we discuss different approximation algorithms suited for any number of time periods and provide an algorithm with a constant approximation factor of . for the case with two periods.
发表于 2025-3-30 01:32:24 | 显示全部楼层
发表于 2025-3-30 07:22:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 08:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表