找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Combinatorial Algorithms; 29th International W Costas Iliopoulos,Hon Wai Leong,Wing-Kin Sung Conference proceedings 2018 Springer Internati

[复制链接]
楼主: 忠诚
发表于 2025-3-23 11:16:33 | 显示全部楼层
发表于 2025-3-23 14:49:00 | 显示全部楼层
https://doi.org/10.1007/978-1-349-25800-0k, and consider the problem of locating a set of . sinks on a dynamic flow path network with . vertices, where people are located, that minimizes the sum of the evacuation times of all evacuees. Our minsum model is more difficult to deal with than the minmax model, because the cost function is not m
发表于 2025-3-23 20:07:02 | 显示全部楼层
发表于 2025-3-24 01:06:48 | 显示全部楼层
https://doi.org/10.1007/978-1-349-26945-7 algorithm is known for . parameterized by the size of the pattern . [Guillemot and Marx 2014], the high complexity of this algorithm makes it impractical for most instances. In this paper we approach the PP problem from .-track permutations, . those permutations that are the union of . increasing p
发表于 2025-3-24 05:28:42 | 显示全部楼层
发表于 2025-3-24 08:36:28 | 显示全部楼层
https://doi.org/10.1007/978-3-540-85138-7edding. A graph is called 1-planar if it can be drawn in the plane with at most one crossing per edge. Our algorithm recursively reduces a 1-planar graph to at most . planar graphs, using edge removal and node contraction. The . problem is then solved on the planar graphs using established polynomia
发表于 2025-3-24 13:00:29 | 显示全部楼层
Helge Toutenburg,Philipp Knöfelsed, a notable example being .-club, which is a subgraph where each vertex is at distance at most . to the others. Here we consider the problem of covering a given graph with the minimum number of .-clubs. We study the computational and approximation complexity of this problem, when . is equal to 2
发表于 2025-3-24 14:59:48 | 显示全部楼层
发表于 2025-3-24 19:45:31 | 显示全部楼层
发表于 2025-3-25 00:29:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表