找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Colloquium De Giorgi 2009; Umberto Zannier Conference proceedings 2012 Scuola Normale Superiore Pisa 2012

[复制链接]
楼主: Clientele
发表于 2025-3-23 13:46:56 | 显示全部楼层
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real variable.
发表于 2025-3-23 15:58:19 | 显示全部楼层
Colloquium De Giorgi 2009978-88-7642-387-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
发表于 2025-3-23 19:25:16 | 显示全部楼层
Erratum to: Blockverbindungen und Sperren,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if . is a connected Lie group.
发表于 2025-3-24 00:08:56 | 显示全部楼层
发表于 2025-3-24 03:32:56 | 显示全部楼层
,Isomorphisms of the Figà-Talamanca-Herz algebras ,,(,) for connected Lie groups ,,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if
发表于 2025-3-24 06:50:29 | 显示全部楼层
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real v
发表于 2025-3-24 12:24:02 | 显示全部楼层
,Leibniz’ conjecture, periods & motives, historical introduction to periods with the aim to demonstrate how a very nice and deep theory evolved during 3 centuries with three themes: numbers (Euler, Leibniz, Hermite, Lindemann, Siegel, Gelfond, Schneider, Baker), Hodge theory (Hodge, De Rham, Grothendieck, Griffiths, Deligne) and motives (
发表于 2025-3-24 18:45:20 | 显示全部楼层
发表于 2025-3-24 21:05:29 | 显示全部楼层
,Leibniz’ conjecture, periods & motives,Deligne, Nori). One of our main intends is to discuss then how to possibly bring these themes together and to show how modern transcendence theory can solve questions which arise at the interfaces between number theory, global analysis, algebraic geometry and arithmetic algebraic geometry.
发表于 2025-3-25 01:38:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 07:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表