找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Collaborative Computing: Networking, Applications and Worksharing; 19th EAI Internation Honghao Gao,Xinheng Wang,Nikolaos Voros Conference

[复制链接]
查看: 51289|回复: 56
发表于 2025-3-21 16:04:15 | 显示全部楼层 |阅读模式
书目名称Collaborative Computing: Networking, Applications and Worksharing
副标题19th EAI Internation
编辑Honghao Gao,Xinheng Wang,Nikolaos Voros
视频video
丛书名称Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engi
图书封面Titlebook: Collaborative Computing: Networking, Applications and Worksharing; 19th EAI Internation Honghao Gao,Xinheng Wang,Nikolaos Voros Conference
描述The three-volume set LNICST 561, 562  563 constitutes the refereed post-conference proceedings of the 19th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2023, held in Corfu Island, Greece, during October 4-6, 2023..The 72 full papers presented in these proceedings were carefully reviewed and selected from 176 submissions. The papers are organized in the following topical sections:.Volume I : Collaborative Computing, Edge Computing & Collaborative working, Blockchain applications, Code Search and Completion, Edge Computing Scheduling and Offloading..Volume II: Deep Learning and Application, Graph Computing, Security and Privacy Protection and Processing and Recognition..Volume III: Onsite Session Day2, Federated learning and application, Collaborative working, Edge Computing and Prediction, Optimization and Applications..
出版日期Conference proceedings 2024
关键词ad hoc networks; artificial intelligence; blockchain; cloud computing; communication channels; computer n
版次1
doihttps://doi.org/10.1007/978-3-031-54528-3
isbn_softcover978-3-031-54527-6
isbn_ebook978-3-031-54528-3Series ISSN 1867-8211 Series E-ISSN 1867-822X
issn_series 1867-8211
copyrightICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024
The information of publication is updating

书目名称Collaborative Computing: Networking, Applications and Worksharing影响因子(影响力)




书目名称Collaborative Computing: Networking, Applications and Worksharing影响因子(影响力)学科排名




书目名称Collaborative Computing: Networking, Applications and Worksharing网络公开度




书目名称Collaborative Computing: Networking, Applications and Worksharing网络公开度学科排名




书目名称Collaborative Computing: Networking, Applications and Worksharing被引频次




书目名称Collaborative Computing: Networking, Applications and Worksharing被引频次学科排名




书目名称Collaborative Computing: Networking, Applications and Worksharing年度引用




书目名称Collaborative Computing: Networking, Applications and Worksharing年度引用学科排名




书目名称Collaborative Computing: Networking, Applications and Worksharing读者反馈




书目名称Collaborative Computing: Networking, Applications and Worksharing读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:33:26 | 显示全部楼层
发表于 2025-3-22 00:25:22 | 显示全部楼层
发表于 2025-3-22 07:54:15 | 显示全部楼层
Defeating the Non-stationary Opponent Using Deep Reinforcement Learning and Opponent Modelingscenario, it is not easy to capture its behavior strategy when confronted with a long-term latent, highly dynamic and unpredictable opponent. FlipIt game can model the stealth interaction of advanced persistent threat. However, it is insufficient for traditional reinforcement learning approach to so
发表于 2025-3-22 10:37:51 | 显示全部楼层
发表于 2025-3-22 15:44:22 | 显示全部楼层
D-AE: A Discriminant Encode-Decode Nets for Data Generationmain. The first is to use algorithms to learn the main features of minority class samples, and the second is to differentiate the generated data from the majority class samples. To tackle these challenges in binary classification, we propose the Discriminant-Autoencoder (D-AE) algorithm. It has two
发表于 2025-3-22 19:28:51 | 显示全部楼层
发表于 2025-3-22 22:22:04 | 显示全部楼层
发表于 2025-3-23 04:46:17 | 显示全部楼层
MD-TransUNet: TransUNet with Multi-attention and Dilated Convolution for Brain Stroke Lesion Segment large difference in the volume of stroke lesion areas and the great similarity between lesion areas and normal tissues, most of the existing methods for lesion segmentation cannot deal with these problems well. This paper proposes a novel network named MD-TransUNet for the segmentation of stroke le
发表于 2025-3-23 06:03:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 05:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表