找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cohomology of Finite Groups; Alejandro Adem,R. James Milgram Book 19941st edition Springer-Verlag Berlin Heidelberg 1994 Algebraic K-theor

[复制链接]
楼主: 突然
发表于 2025-3-23 10:16:19 | 显示全部楼层
发表于 2025-3-23 14:12:36 | 显示全部楼层
The Schur Subgroup of the Brauer Group,. is semi-simple for any field of characteristic zero. Consequently, from the Wedderburn theorems there is a decomposition . where the .. run over central simple division algebras with center K. a finite cyclotomic extension of F. The question that we answer here is the determination of all the clas
发表于 2025-3-23 20:34:51 | 显示全部楼层
发表于 2025-3-23 23:37:54 | 显示全部楼层
0072-7830 Overview: 978-3-662-06282-1Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-24 02:31:19 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-5667-7ion with the structure of cohomology operations. This arises through Steenrod’s definition of the .. power operations in terms of properties of certain elements in the groups ..... Indeed, the original calculation of H.(S.;ℙ.) by Nakaoka was motivated by this connection.
发表于 2025-3-24 07:12:50 | 显示全部楼层
Separations Using Aqueous Phase Systemslassification of finite simple groups, [Gor], it was shown that there exist 2Ì3 simple groups not belonging to infinite families (i.e. not of alternating or Lie type) and we study six of these groups here: four of the five Mathieu groups, the first Janko group, J., and the O’Nan group ..
发表于 2025-3-24 13:46:06 | 显示全部楼层
发表于 2025-3-24 18:15:34 | 显示全部楼层
https://doi.org/10.1007/978-3-662-06282-1Algebraic K-theory; Cohomology of Groups; Group Actions; Homotopy; K-theory; algebra; algebraic topology; c
发表于 2025-3-24 22:14:35 | 显示全部楼层
Springer-Verlag Berlin Heidelberg 1994
发表于 2025-3-25 02:56:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 00:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表