找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cognitive Informatics and Soft Computing; Proceeding of CISC 2 Pradeep Kumar Mallick,Akash Kumar Bhoi,Victor Hugo Conference proceedings 20

[复制链接]
楼主: Ford
发表于 2025-3-25 04:25:16 | 显示全部楼层
发表于 2025-3-25 08:19:33 | 显示全部楼层
Cognitive Informatics and Soft Computing978-981-16-1056-1Series ISSN 2194-5357 Series E-ISSN 2194-5365
发表于 2025-3-25 12:07:18 | 显示全部楼层
发表于 2025-3-25 19:21:46 | 显示全部楼层
发表于 2025-3-25 20:23:38 | 显示全部楼层
发表于 2025-3-26 03:05:47 | 显示全部楼层
Classification of Arrhythmia Through Heart Rate Variability Using Logistic Regression,tion heart rhythm of the subjects suffering from arrhythmia. Accurate classification of the abnormal ECG signal from normal signals helps the clinical practitioners to diagnose arrhythmia patients. This article proposed an arrhythmia detection scheme using feature selection and logistic regression.
发表于 2025-3-26 07:18:51 | 显示全部楼层
发表于 2025-3-26 12:09:20 | 显示全部楼层
2194-5357 s a reference resource for researchers and practitioners in .This book presents best selected research papers presented at the 3rd International Conference on Cognitive Informatics and Soft Computing (CISC 2020), held at Balasore College of Engineering & Technology, Balasore, Odisha, India, from 12
发表于 2025-3-26 13:43:16 | 显示全部楼层
Intelligent Systems Reference Librarys reviewed with their comparative analysis as per healthcare data analytics. To design and implement a biosensor, suitable machine learning algorithm should be selected in order to detect anxiety and stress levels. Using machine learning algorithms, the analysis can be fault-tolerant and stress detection could be effective in terms of convenience.
发表于 2025-3-26 20:47:21 | 显示全部楼层
Biotechnology: Pharmaceutical Aspectstion heart rhythm of the subjects suffering from arrhythmia. Accurate classification of the abnormal ECG signal from normal signals helps the clinical practitioners to diagnose arrhythmia patients. This article proposed an arrhythmia detection scheme using feature selection and logistic regression.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 06:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表