找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Coding Theory and Design Theory; Part I Coding Theory Dijen Ray-Chaudhuri Conference proceedings 1990 Springer-Verlag New York, Inc. 1990 C

[复制链接]
楼主: 万能
发表于 2025-3-26 21:03:24 | 显示全部楼层
Self-Orthogonal Codes and the Topology of Spinor Groups,cribe the correspondence and discuss various techniques from the algebraic topology of Spin(n) which may be useful in studying self-orthogonal codes. In particular, Quillen’s results in equivariant cohomology theory coupled with some Morse theory may allow one to address certain questions on the minimum weight of doubly-even self-orthogonal codes.
发表于 2025-3-27 03:28:50 | 显示全部楼层
发表于 2025-3-27 07:29:13 | 显示全部楼层
发表于 2025-3-27 11:13:35 | 显示全部楼层
Baer Subplanes, Ovals and Unitals,exploring further the notions that were introduced in [1]. There we defined the hull, ., of a design . over a finite field ., where . is a prime that divides the order . of the design: if . denotes the code of . over .., defined to be the space spanned by the characteristic functions of the blocks o
发表于 2025-3-27 15:49:23 | 显示全部楼层
On the Length of Codes with a Given Covering Radius,st a code of codimension 11 and covering radius 2 which has length 64. We conclude with a table which gives the best available information for the length of a code with codimension . and covering radius . for 2 ≤ . ≤ 24 and 2 ≤ . ≤ 24.
发表于 2025-3-27 21:29:08 | 显示全部楼层
发表于 2025-3-27 22:30:10 | 显示全部楼层
发表于 2025-3-28 02:33:45 | 显示全部楼层
Perfect Multiple Coverings in Metric Schemes,essary and sufficient condition is found to determine when a metric scheme admits a nontrivial perfect multiple covering. Results specific to the classical Hamming and Johnson schemes are given which bear out the relationship between .-designs, orthogonal arrays, and perfect multiple coverings.
发表于 2025-3-28 09:22:21 | 显示全部楼层
发表于 2025-3-28 10:38:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-23 14:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表