找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Coding Ockham‘s Razor; Lloyd Allison Book 2018 Springer International Publishing AG, part of Springer Nature 2018 artificial intelligence.

[复制链接]
查看: 46155|回复: 46
发表于 2025-3-21 19:53:27 | 显示全部楼层 |阅读模式
书目名称Coding Ockham‘s Razor
编辑Lloyd Allison
视频video
概述Gathers together the minimum necessary MML theory in one place".Implemented models and estimators include those for discrete, continuous and multivariate data, mixture models (clustering), regressions
图书封面Titlebook: Coding Ockham‘s Razor;  Lloyd Allison Book 2018 Springer International Publishing AG, part of Springer Nature 2018 artificial intelligence.
描述.This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham‘s Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fields of data analysis and machine learning to write computer programs based upon this principle.. . MML inference has been around for 50 years and yet only one highly technical book has been written about the subject.  The majority of research in the field has been backed by specialised one-off programs but this book includes a library of general MML–based software, in Java.  The Java source code is available under the GNU GPL open-source license.  The software library is documented using Javadoc which produces extensive cross referenced HTML manual pages.  Every probability distribution and statistical model that is described in the book is implemented and documentedin the software library.  The library may contain a component that directly solves a reader‘s inference problem, or contain components that can be put together to solve the problem, or provide a standard interface under which a n
出版日期Book 2018
关键词artificial intelligence; Bayesian; data science; inference; information; machine learning; minimum message
版次1
doihttps://doi.org/10.1007/978-3-319-76433-7
isbn_softcover978-3-030-09488-1
isbn_ebook978-3-319-76433-7
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

书目名称Coding Ockham‘s Razor影响因子(影响力)




书目名称Coding Ockham‘s Razor影响因子(影响力)学科排名




书目名称Coding Ockham‘s Razor网络公开度




书目名称Coding Ockham‘s Razor网络公开度学科排名




书目名称Coding Ockham‘s Razor被引频次




书目名称Coding Ockham‘s Razor被引频次学科排名




书目名称Coding Ockham‘s Razor年度引用




书目名称Coding Ockham‘s Razor年度引用学科排名




书目名称Coding Ockham‘s Razor读者反馈




书目名称Coding Ockham‘s Razor读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:19:24 | 显示全部楼层
Leslie A. Dervan,R. Scott WatsonThis chapter concerns models of integers, ., most often of non-negative (.) or positive (.) integers.
发表于 2025-3-22 04:24:24 | 显示全部楼层
Sedation Considerations for ECMOThe important thing about continuous data—., real, floating point, double—is that each datum has an accuracy of measurement (AoM), ., and hence a negative log AoM (nlAoM), .. A datum . is of the form .. Models of such data are generally defined in terms of a probability density function pdf(.).
发表于 2025-3-22 06:57:14 | 显示全部楼层
发表于 2025-3-22 10:32:00 | 显示全部楼层
Sedentary Behaviour and MortalityA linear regression is a form of function-model (Chaps. ., .) between continuous variables. An output (dependent) variable . is approximated by a function .(.) of an input (independent) variable . with the error, . − .(.), being modelled by a model of continuous data (Chap. .), most commonly by the Normal distribution (Sect. .).
发表于 2025-3-22 14:25:42 | 显示全部楼层
Introduction,This book is about inductive inference using the minimum message length (MML) principle and a computer. It is accompanied by a library of software to help an applications programmer, student or researcher in the fields of data analysis or machine learning to write computer programs of this kind.
发表于 2025-3-22 19:00:38 | 显示全部楼层
发表于 2025-3-23 00:26:40 | 显示全部楼层
发表于 2025-3-23 03:51:12 | 显示全部楼层
发表于 2025-3-23 06:56:36 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 03:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表