找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Codes, Systems, and Graphical Models; Brian Marcus,Joachim Rosenthal Conference proceedings 2001 Springer Science+Business Media New York

[复制链接]
楼主: 要求
发表于 2025-3-28 17:59:42 | 显示全部楼层
Properties of the Tailbiting BCJR Decodersists of forward and backward recursions that start from the left and right principal eigenvectors of the product of the trellis gamma matrices. The result is a slightly sub-optimal symbol-by-symbol MAP decoder that performs much less computation than the true MAP decoder. The decoder has both itera
发表于 2025-3-28 22:42:56 | 显示全部楼层
Iterative Decoding of Tail-Biting Trellises and Connections with Symbolic Dynamicsrithms on tail-biting (TB) trellises..The convergence of the sum-product algorithm on tail-biting trellises was analyzed recently by Anderson and Hladik [2] and was shown to give approximate a . probabilities..We introduce and analyze generating function versions of both algorithms, each involving a
发表于 2025-3-28 22:54:44 | 显示全部楼层
Algorithms for Decoding and Interpolationnd the Welch-Beriekamp algorithm. We focus on relationships of these algorithms with interpolation methods in system theory. We note that the problem statements in the two areas can be different: from a system theoretic point of view, rational interpolating functions with common factors between nume
发表于 2025-3-29 06:43:00 | 显示全部楼层
发表于 2025-3-29 10:30:26 | 显示全部楼层
发表于 2025-3-29 13:58:45 | 显示全部楼层
发表于 2025-3-29 18:10:46 | 显示全部楼层
Eric Gyamfi,James Adu Ansere,Mohsin Kamal parameter x. This involves the minwps graph, a tool borrowed from the symbolic dynamics of Markov chains. We determine the limiting behavior as x → 0 of the result of the generating-function sum-product algorithm and show how this relates to maximum-likelihood sequences and the generating-function min-sum algorithm.
发表于 2025-3-29 20:35:19 | 显示全部楼层
Bogdan Groza,Lucian Popa,Pal-Stefan Murvaynd suboptimal bit decoders and of the optimal and suboptimal message passing. We explain exactly how suboptimal algorithms approximate the optimal, and show how good these approximations are in some special cases.
发表于 2025-3-30 00:34:47 | 显示全部楼层
发表于 2025-3-30 07:42:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 05:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表