找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland

[复制链接]
查看: 35736|回复: 40
发表于 2025-3-21 18:34:37 | 显示全部楼层 |阅读模式
书目名称Clustering Methods for Big Data Analytics
副标题Techniques, Toolboxe
编辑Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir
视频video
概述Includes the most recent and innovative advances in Big Data Clustering.Describes recent tools, techniques, and frameworks for Big Data Analytics.Introduces surveys, applications and case studies of B
丛书名称Unsupervised and Semi-Supervised Learning
图书封面Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland
描述.This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation..
出版日期Book 2019
关键词Clustering large scale data; Clustering heterogeneous data; Deep learning methods for clustering; Appli
版次1
doihttps://doi.org/10.1007/978-3-319-97864-2
isbn_softcover978-3-030-07419-7
isbn_ebook978-3-319-97864-2Series ISSN 2522-848X Series E-ISSN 2522-8498
issn_series 2522-848X
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Clustering Methods for Big Data Analytics影响因子(影响力)




书目名称Clustering Methods for Big Data Analytics影响因子(影响力)学科排名




书目名称Clustering Methods for Big Data Analytics网络公开度




书目名称Clustering Methods for Big Data Analytics网络公开度学科排名




书目名称Clustering Methods for Big Data Analytics被引频次




书目名称Clustering Methods for Big Data Analytics被引频次学科排名




书目名称Clustering Methods for Big Data Analytics年度引用




书目名称Clustering Methods for Big Data Analytics年度引用学科排名




书目名称Clustering Methods for Big Data Analytics读者反馈




书目名称Clustering Methods for Big Data Analytics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:56:10 | 显示全部楼层
发表于 2025-3-22 00:37:42 | 显示全部楼层
发表于 2025-3-22 08:24:22 | 显示全部楼层
发表于 2025-3-22 11:04:03 | 显示全部楼层
发表于 2025-3-22 14:49:41 | 显示全部楼层
发表于 2025-3-22 18:34:29 | 显示全部楼层
发表于 2025-3-23 00:24:53 | 显示全部楼层
,Schweißen von Aluminiumwerkstoffen,uch data into groups of similar objects. Several methods were proposed during the last decade to deal with this important challenge. We propose in this chapter an overview of the existing clustering methods with a special emphasis on scalable partitional methods. We design a new categorizing model b
发表于 2025-3-23 03:11:48 | 显示全部楼层
发表于 2025-3-23 06:34:00 | 显示全部楼层
,Prüfung von Schweißverbindungen,of these datasets has diverse applications, such as detecting fraud and illegal transactions, characterizing major services, identifying financial hotspots, and characterizing usage and performance characteristics of large peer-to-peer consensus-based systems. Unsupervised learning methods in genera
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 15:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表