找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Closure Properties for Heavy-Tailed and Related Distributions; An Overview Remigijus Leipus,Jonas Šiaulys,Dimitrios Konstanti Book 2023 The

[复制链接]
楼主: interleukins
发表于 2025-3-23 09:58:21 | 显示全部楼层
Convolution-Root Closure,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
发表于 2025-3-23 17:18:07 | 显示全部楼层
发表于 2025-3-23 20:57:01 | 显示全部楼层
978-3-031-34552-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-23 22:38:39 | 显示全部楼层
Closure Properties for Heavy-Tailed and Related Distributions978-3-031-34553-1Series ISSN 2191-544X Series E-ISSN 2191-5458
发表于 2025-3-24 06:02:51 | 显示全部楼层
Was verursacht Schizophrenien?,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
发表于 2025-3-24 07:02:38 | 显示全部楼层
Remigijus Leipus,Jonas Šiaulys,Dimitrios KonstantiPresents a concise overview of closure properties of heavy-tailed and related distributions.Features several examples and counterexamples that provide an insight into the theory.Provides numerous refe
发表于 2025-3-24 13:09:36 | 显示全部楼层
发表于 2025-3-24 17:34:06 | 显示全部楼层
发表于 2025-3-24 21:33:17 | 显示全部楼层
发表于 2025-3-25 01:32:22 | 显示全部楼层
Zusammenfassende Schlussbemerkungen,s. In Sect. 3.3, we discuss the convolution closure properties in relation to the notion of max-sum equivalence. In further sections, we overview and discuss the closure properties of the heavy-tailed and related distributions, introduced in Chap. ., under strong/weak tail-equivalence, convolution,
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 07:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表