找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Clinical Image-Based Procedures; 11th Workshop, CLIP Yufei Chen,Marius George Linguraru,Cristina Oyarzu Conference proceedings 2023 The Ed

[复制链接]
楼主: 表范围
发表于 2025-3-26 22:18:31 | 显示全部楼层
https://doi.org/10.1007/978-981-16-4023-0paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
发表于 2025-3-27 01:36:16 | 显示全部楼层
,Fast Auto-differentiable Digitally Reconstructed Radiographs for Solving Inverse Problems in Intraoemented this vectorized version of Siddon’s method in PyTorch, taking advantage of the library’s strong automatic differentiation engine to make this DRR generator fully differentiable with respect to its parameters. Additionally, using GPU-accelerated tensor computation enables our vectorized imple
发表于 2025-3-27 08:53:04 | 显示全部楼层
,Machine Learning Based Approach for Motion Detection and Estimation in Routinely Acquired Low Resoll is trained to evaluate the severity and time point of possible motion..The model for the first phase achieves a precision of 20.78 % and a recall of 69.57 %, while the model for the second phase reaches a precision of 67.71 % and a recall of 98.49 % to detect non-negligible motion. Despite low pre
发表于 2025-3-27 11:42:08 | 显示全部楼层
发表于 2025-3-27 15:20:52 | 显示全部楼层
,STAU-Net: A Spatial Structure Attention Network for 3D Coronary Artery Segmentation,ets the loss contextual information by fusing the feature map of the upper decoder. Also, the framework first resamples the input to a fixed size to implement training and up-sample to original size by customized post-processing at output stage. Compared with other related segmentation networks, the
发表于 2025-3-27 18:06:42 | 显示全部楼层
,Feature Patch Based Attention Model for Dental Caries Classification,paper, we propose a feature patch based attention model to improve the classification accuracy of dental caries in CBCT images. We extract overlapping patches from the 3D feature maps and assign every patch with a corresponding weight computed by adaptive learning to achieve automatic screening of r
发表于 2025-3-27 22:09:24 | 显示全部楼层
发表于 2025-3-28 05:04:00 | 显示全部楼层
发表于 2025-3-28 07:39:41 | 显示全部楼层
发表于 2025-3-28 10:57:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 13:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表