找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Climate Time Series Analysis; Classical Statistica Manfred Mudelsee Book 20101st edition Springer Science+Business Media B.V. 2010 AR(1).At

[复制链接]
楼主: 街道
发表于 2025-3-23 09:53:16 | 显示全部楼层
Gesellschaft für Wärmewirtschaftscience” (Kuhn 1970), extensions of previous material (Chapters 1, 2, 3, 4, 5, 6, 7 and 8). Then we take a chance (Sections 9.4 and 9.5) and look on paradigm changes in climate data analysis that may be effected by virtue of strongly increased computing power (and storage capacity). Whether this tec
发表于 2025-3-23 14:42:49 | 显示全部楼层
https://doi.org/10.1007/978-90-481-9482-7AR(1); Atmospheric; Bootstrap; Frequency analysis; Regression; Resampling; Scale; Time series; Weather; corre
发表于 2025-3-23 18:35:17 | 显示全部楼层
发表于 2025-3-23 22:36:42 | 显示全部楼层
发表于 2025-3-24 04:24:37 | 显示全部楼层
Inhalt und Ziel des Reklametextes,The correlation measures how strong a coupling is between the noise components of two processes, ..(.) and ..(.). Using a bivariate time series sample, ., this measure allows to study the relationship between two climate variables, each described by its own climate equation (Eq. 1.2).
发表于 2025-3-24 10:19:56 | 显示全部楼层
Regression IRegression is a method to estimate the trend in the climate equation (Eq. 1.1). Assume that outlier data do not exist or have already been removed by the assistance of an extreme value analysis (Chapter 6). Then the climate equation is a regression equation
发表于 2025-3-24 12:27:17 | 显示全部楼层
CorrelationThe correlation measures how strong a coupling is between the noise components of two processes, ..(.) and ..(.). Using a bivariate time series sample, ., this measure allows to study the relationship between two climate variables, each described by its own climate equation (Eq. 1.2).
发表于 2025-3-24 15:56:51 | 显示全部楼层
Climate Time Series Analysis978-90-481-9482-7Series ISSN 1383-8601 Series E-ISSN 2215-162X
发表于 2025-3-24 19:50:34 | 显示全部楼层
发表于 2025-3-25 02:11:53 | 显示全部楼层
Fettschmierung und Schmierfette,e—the risk of climate extremes—is of high socioeconomical relevance. In the context of climate change, it is important to move from stationary to nonstationary (time-dependent) models: with climate changes also risk changes may be associated.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 10:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表