找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Clifford Analysis and Its Applications; F. Brackx,J. S. R. Chisholm,V. Souček Book 2001 Springer Science+Business Media Dordrecht 2001 Bou

[复制链接]
楼主: 从未迷惑
发表于 2025-3-25 06:08:11 | 显示全部楼层
发表于 2025-3-25 10:19:31 | 显示全部楼层
Hyper-holomorphic Cells and Riemann-Hilbert Problems,uch cells attached to a given submanifold may be described by Fredholm operators in appropriate function spaces. Using recent results of I.Stern and of the present author on existence of elliptic Riemann-Hilbert problems for generalized Cauchy-Riemann systems, we indicate some classes of systems whi
发表于 2025-3-25 14:17:33 | 显示全部楼层
发表于 2025-3-25 18:50:07 | 显示全部楼层
A Quaternionic Generalization of the Riccati Differential Equation,nger equation is established. Various approaches to the problem of finding particular solutions to this equation are explored, and the generalisations of two theorems of Euler on the Riccati equation, which correspond to this partial differential equation, are stated and proved.
发表于 2025-3-25 20:24:54 | 显示全部楼层
发表于 2025-3-26 00:53:46 | 显示全部楼层
发表于 2025-3-26 07:25:36 | 显示全部楼层
Parallel Transport of Algebraic Spinors on Clifford Manifolds,raic unit. It is suggested that this term might be the source of a cosmological ‘constant’. More generally, it is conjectured that the necessary asymmetry of spinor -idempotents might be the source of asymmetries observed in nature.
发表于 2025-3-26 11:23:24 | 显示全部楼层
发表于 2025-3-26 15:14:06 | 显示全部楼层
On Generalized Clifford Algebras - a Survey of Applications,e dimensional quantum mechanics. There, one degree of freedom is represented by a toroidal grid . . × . . i.e. classical phase space. The seeds of the “.-th order idea” may be traced back to Weierstrass [.] who considered possible commutative extensions of complex numbers to the case of arbitrary nu
发表于 2025-3-26 17:18:42 | 显示全部楼层
1568-2609 ctions for future research. ..Readership:. Mathematicians and theoretical physicists interestedin Clifford analysis itself, or in its applications to other fields.978-0-7923-7045-1978-94-010-0862-4Series ISSN 1568-2609
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 13:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表