找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical and Modern Potential Theory and Applications; K. GowriSankaran,J. Bliedtner,I. Netuka Book 1994 Kluwer Academic Publishers 1994

[复制链接]
楼主: ANNOY
发表于 2025-3-23 10:26:30 | 显示全部楼层
发表于 2025-3-23 16:45:25 | 显示全部楼层
发表于 2025-3-23 21:13:39 | 显示全部楼层
Ralph H. Nafziger,Gene C. Ulmer,Ed WoermannWe consider Sobolev spaces and capacities associated with a generalized Ornstein-Uhlenbeck semigroup. In order to obtain a probabilistic counterpart, we construct and investigate certain multiparameter processes. These are used to characterize polar sets and quasi-continuous functions.
发表于 2025-3-24 00:49:07 | 显示全部楼层
发表于 2025-3-24 03:26:59 | 显示全部楼层
发表于 2025-3-24 06:49:37 | 显示全部楼层
Jason Home,Tom Snelling,John WillisonWe give a necessary and sufficient condition of Wiener type for the regularity of boundary points for Poincaré-Dirichlet forms; moreover estimates on the modulus of continuity and on the energy decay of a solution at a regular boundary point are studied.
发表于 2025-3-24 14:02:33 | 显示全部楼层
https://doi.org/10.1007/978-981-99-6679-0The behaviour of the balayage on the complement of a fine open set is investigated near an irregular boundary point. We extend also the classical Harnack inequality. We generalise essentially, in the frame of excessive functions, results of M. Brelot, E. Smyrnelis, H. Bauer, W. Hansen and I. Netuka obtained in the context of harmonic spaces.
发表于 2025-3-24 15:03:34 | 显示全部楼层
发表于 2025-3-24 19:53:06 | 显示全部楼层
发表于 2025-3-25 02:09:13 | 显示全部楼层
,k-Superharmonic Functions and L. Kelvin’s Theorem,In this work we have given the definition of “k-superharmonic” functions on the hyper octant related to the operator L.. After that we examined some properties of them such as the concavity property of the weighted mean value and the boundary behaviour of k-superharmonic functions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 13:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表