找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classical Mirror Symmetry; Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of

[复制链接]
查看: 19713|回复: 35
发表于 2025-3-21 18:45:49 | 显示全部楼层 |阅读模式
书目名称Classical Mirror Symmetry
编辑Masao Jinzenji
视频videohttp://file.papertrans.cn/228/227108/227108.mp4
概述Restricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
丛书名称SpringerBriefs in Mathematical Physics
图书封面Titlebook: Classical Mirror Symmetry;  Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of
描述This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold..First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold..On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation
出版日期Book 2018
关键词Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
版次1
doihttps://doi.org/10.1007/978-981-13-0056-1
isbn_softcover978-981-13-0055-4
isbn_ebook978-981-13-0056-1Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
The information of publication is updating

书目名称Classical Mirror Symmetry影响因子(影响力)




书目名称Classical Mirror Symmetry影响因子(影响力)学科排名




书目名称Classical Mirror Symmetry网络公开度




书目名称Classical Mirror Symmetry网络公开度学科排名




书目名称Classical Mirror Symmetry被引频次




书目名称Classical Mirror Symmetry被引频次学科排名




书目名称Classical Mirror Symmetry年度引用




书目名称Classical Mirror Symmetry年度引用学科排名




书目名称Classical Mirror Symmetry读者反馈




书目名称Classical Mirror Symmetry读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:39 | 显示全部楼层
https://doi.org/10.1007/978-981-13-0056-1Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
发表于 2025-3-22 01:02:35 | 显示全部楼层
978-981-13-0055-4The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
发表于 2025-3-22 04:53:15 | 显示全部楼层
DOORS: A Tool to Manage Requirements,tic string theory in order to obtain a 4-dimensional grand unified theory that describes our real world. The complex 3-dimensional Calabi–Yau manifold is nothing but the compact 6-dimensional space used for this purpose. In this chapter, we explain why this idea came from particle physicists and giv
发表于 2025-3-22 11:25:46 | 显示全部楼层
Elizabeth Hull,Ken Jackson,Jeremy Dickst, we introduce the definition of complex manifolds and holomorphic vector bundles on complex manifolds. We also discuss Chern classes of holomorphic vector bundles. Then we introduce K.hler manifolds, which play a central role in geometry of complex manifolds, and explain various characteristics o
发表于 2025-3-22 14:51:40 | 显示全部楼层
发表于 2025-3-22 19:37:46 | 显示全部楼层
发表于 2025-3-22 23:30:22 | 显示全部楼层
发表于 2025-3-23 04:10:55 | 显示全部楼层
Masao JinzenjiRestricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
发表于 2025-3-23 05:49:31 | 显示全部楼层
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/c/image/227108.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-8 23:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表