找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classes of Linear Operators; Israel Gohberg,Marinus A. Kaashoek,Seymour Goldber Book 1993 Birkhäuser Verlag 1993 Mathematik.complex analys

[复制链接]
楼主: 到来
发表于 2025-3-23 10:32:49 | 显示全部楼层
发表于 2025-3-23 15:07:22 | 显示全部楼层
发表于 2025-3-23 20:37:38 | 显示全部楼层
Unitary Systems and Characteristic Operator Functionsnput-output map or the associated transfer function. In the theory of characteristic operator functions the situation is different. Here the main operator ., which is a contraction, comes first and the characteristic operator function serves as a unitary invariant for ..
发表于 2025-3-24 01:02:03 | 显示全部楼层
发表于 2025-3-24 04:15:28 | 显示全部楼层
发表于 2025-3-24 09:26:36 | 显示全部楼层
发表于 2025-3-24 12:45:24 | 显示全部楼层
https://doi.org/10.1007/b101825This chapter contains the Stone-Weierstrass theorem and the Gelfand-Naimark representation theorem for commutative Banach algebras with an involution. The latter theorem is used to derive the spectral theorem for a normal operator. The Gelfand-Naimark characterization of a .*-algebra as a closed *-subalgebra of operators is also presented.
发表于 2025-3-24 15:37:18 | 显示全部楼层
Additive Lower-Upper Triangular Decompositions of OperatorsThe decomposition.maybe viewed as the analogue of the additive lower-upper triangular decomposition of a square matrix. In this chapter we study such decomposition for general operators. We begin with the first generalization of the matrix case.
发表于 2025-3-24 22:56:57 | 显示全部楼层
Block Toeplitz OperatorsThe first three sections of this chapter have an introductory character. Section 2 contains a short introduction to Laurent operators. In Section 3 the first properties of block Toeplitz operators are derived. Sections 4 and 5 develop the Fredholm theory of block Toeplitz operators defined by continuous functions.
发表于 2025-3-25 00:41:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 05:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表