找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chemometric Methods in Analytical Spectroscopy Technology; Xiaoli Chu,Yue Huang,Xihui Bian Book 2022 The Editor(s) (if applicable) and The

[复制链接]
楼主: 召唤
发表于 2025-3-30 10:13:09 | 显示全部楼层
https://doi.org/10.1007/978-3-322-97706-9matic learning features. The term “deep” usually refers to hidden layers in neural networks. The network will be deeper with more layers. Traditional neural networks only contain two or three layers, while deep networks may contain dozens or even hundreds of hidden layers.
发表于 2025-3-30 12:25:55 | 显示全部楼层
pth explanation of deep learning algorithms.This book discusses chemometric methods for spectroscopy analysis including NIR, MIR, Raman, NMR, and LIBS, from the perspective of practical applied spectroscopy. It covers all aspects of chemometrics associated with analytical spectroscopy, including rep
发表于 2025-3-30 17:48:21 | 显示全部楼层
Book 2022 spectroscopy. It covers all aspects of chemometrics associated with analytical spectroscopy, including representative sample selection algorithm, outlier detection algorithm, model updating and maintenance algorithm and strategy and calibration performance evaluation methods.To provide a systematic
发表于 2025-3-30 23:51:04 | 显示全部楼层
发表于 2025-3-31 02:58:06 | 显示全部楼层
发表于 2025-3-31 05:44:49 | 显示全部楼层
Book 2022In addition the book also highlights the improvement of classical algorithms and the extension of common strategies. It is therefore useful as a reference book for researchers engaged in analytical spectroscopy technology, chemometrics, analytical instruments and other related fields..
发表于 2025-3-31 10:17:32 | 显示全部楼层
发表于 2025-3-31 13:57:23 | 显示全部楼层
发表于 2025-3-31 21:28:58 | 显示全部楼层
发表于 2025-3-31 22:18:14 | 显示全部楼层
Method of Selecting Calibration Samples,a robust model. As shown in Fig. ., the selection of samples is to select the row vector of spectral matrix . and the row vector of corresponding concentration matrix ., and the selection of wavelength is to select the column vector of spectral matrix ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 19:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表