找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[复制链接]
楼主: 遮阳伞
发表于 2025-3-25 04:51:23 | 显示全部楼层
发表于 2025-3-25 11:13:53 | 显示全部楼层
IntroductionEver since its discovery in 1963, the Lorenz system has been a paradigm of chaos and the Lorenz attractor has become an emblem of chaos. Lorenz himself thus has been marked by history as an icon of chaos theory.
发表于 2025-3-25 14:43:54 | 显示全部楼层
Chaotic Systems with Stable EquilibriaAlthough the Šil’nikov theorem ensures horseshoe chaos to exist with a homoclinic orbit if its characteristic eigenvalues with negative real parts at the equilibria satisfy some specific conditions, it does not rule out the possibility of encountering chaos in systems with stable equilibria.
发表于 2025-3-25 17:47:08 | 显示全部楼层
发表于 2025-3-25 23:26:19 | 显示全部楼层
Hyperchaotic Systems with Hidden AttractorsRecently, research focus has been shifted from classifying periodic and chaotic attractors to self-excited and hidden attractors [.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.].
发表于 2025-3-26 03:20:54 | 显示全部楼层
发表于 2025-3-26 04:40:18 | 显示全部楼层
发表于 2025-3-26 08:55:55 | 显示全部楼层
Multi-Stability in Self-Reproducing SystemsAs we discussed in the above chapters, many dynamical systems can produce similar attractors, specifically some of which [1–10] share the same Lyapunov exponents.
发表于 2025-3-26 13:01:04 | 显示全部楼层
发表于 2025-3-26 20:21:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-5 15:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表