找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Chaos and Complex Systems; Proceedings of the 4 Stavros G. Stavrinides,Santo Banerjee,Mehmet Ozer Conference proceedings 2013 Springer-Verl

[复制链接]
楼主: 宣告无效
发表于 2025-3-28 18:25:39 | 显示全部楼层
https://doi.org/10.1007/978-3-642-33914-1Chaos and Nonlinear Dynamics; Complex systems; International Interdisciplinary Chaos Symposium; complex
发表于 2025-3-28 21:26:02 | 显示全部楼层
发表于 2025-3-29 02:22:19 | 显示全部楼层
发表于 2025-3-29 06:35:00 | 显示全部楼层
发表于 2025-3-29 11:00:37 | 显示全部楼层
发表于 2025-3-29 13:23:48 | 显示全部楼层
Der anthropocentrische Standpunkt,g a non-polynomial spline method. In the solution of the problem, finite difference discretization in time, and parametric quintic spline along the spatial coordinate have been carried out. The result shows that the applied method in this paper is an applicable technique and approximates the exact solution very well.
发表于 2025-3-29 17:05:57 | 显示全部楼层
Two Element Chaotic and Hyperchaotic Circuits,(memristors, memcapacitors and meminductors). The second goal is to use the FPGA emulation to realize two element chaotic and hyperchaotic circuits. Such circuits utilize fully nonlinear models of memory devices in series-parallel configuration.
发表于 2025-3-29 20:52:41 | 显示全部楼层
发表于 2025-3-30 03:10:51 | 显示全部楼层
On the Criterion of Stochastic Structure Formation in Random Media,appear with probability one, i.e., almost in every system realization, due to rare events happened with probability approaching to zero. The problems of such type arise in hydrodynamics, magnetohydrodynamics, physics of plasma, astrophysics, and radiophysics.
发表于 2025-3-30 06:28:18 | 显示全部楼层
Non-polynomial Spline Solution for a Fourth-Order Non-homogeneous Parabolic Partial Differential Eqg a non-polynomial spline method. In the solution of the problem, finite difference discretization in time, and parametric quintic spline along the spatial coordinate have been carried out. The result shows that the applied method in this paper is an applicable technique and approximates the exact solution very well.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 20:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表