找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20

[复制链接]
楼主: Lampoon
发表于 2025-3-26 21:47:10 | 显示全部楼层
https://doi.org/10.1007/978-3-658-42014-7 that we configure the 3D U-Net with a large patch size, which can obtain the large context. Our method ranked second on the MICCAI 2020 CADA testing dataset with an average Jaccard of 0.7593. Our code and trained models are publicly available at ..
发表于 2025-3-27 02:10:30 | 显示全部楼层
Organisationale Machtbeziehungen im Wandelosed. We applied a variety of methods to extract features of cerebral aneurysm images and 3D modeling, and used XGBoost and fully connected neural network for classification and analysis respectively. The method achieved an F2-score of 0.862 on the test set of CADA 2020.
发表于 2025-3-27 08:19:38 | 显示全部楼层
发表于 2025-3-27 11:08:58 | 显示全部楼层
Cerebral Aneurysm Rupture Risk Estimation Using XGBoost and Fully Connected Neural Networkosed. We applied a variety of methods to extract features of cerebral aneurysm images and 3D modeling, and used XGBoost and fully connected neural network for classification and analysis respectively. The method achieved an F2-score of 0.862 on the test set of CADA 2020.
发表于 2025-3-27 17:17:24 | 显示全部楼层
Heidi Möller,Thomas Giernalczykaccuracy across various models fed with the aneurysm site encoding. A K-nearest neighbors method shows the best results during our model selection with an F2-score of 0.7 and an accuracy of 0.73 on the relatively small private test set with 22 individuals and 30 aneurysms.
发表于 2025-3-27 19:38:41 | 显示全部楼层
发表于 2025-3-27 23:34:47 | 显示全部楼层
发表于 2025-3-28 04:24:19 | 显示全部楼层
https://doi.org/10.1007/978-3-030-72862-53D imaging; artificial intelligence; computer graphics; computer systems; computer vision; deep learning;
发表于 2025-3-28 06:34:28 | 显示全部楼层
发表于 2025-3-28 12:12:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-6 04:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表