找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators; Albrecht Böttcher,Yuri I. Karlovich Book 1997 Springer Basel AG 1997 Singula

[复制链接]
楼主: Flange
发表于 2025-3-23 09:42:53 | 显示全部楼层
发表于 2025-3-23 16:26:34 | 显示全部楼层
发表于 2025-3-23 19:01:19 | 显示全部楼层
General properties of Toeplitz operators,er words, .(a) is the bounded operator which sends . ∈ ..(Γ, ω) to .(ag) ∈ ..(Γ, ω). A central problem in the spectral theory of singular integral operators is the determination of the essential spectrum of Toeplitz operators with piecewise continuous symbols. This problem will be completely solved in Chapter 7.
发表于 2025-3-23 22:22:42 | 显示全部楼层
Carleson curves,xamples. The “oscillation” of a Carleson curve Γ at a point . ∈ Γ may be measured by its Seifullayev bounds ..and ..as well as its spirality indices .. and ..The definition of the spirality indices requires the notion of the W transform and some facts from the theory of submultiplicative functions.
发表于 2025-3-24 06:07:30 | 显示全部楼层
发表于 2025-3-24 10:33:18 | 显示全部楼层
Boundedness of the Cauchy singular integral,of this book, says that . is bounded on ..(Γ, .) (1 <. ∞) if and only if Γ is a Carleson curve and . is a Muckenhoupt weight in ..(Γ). The proof of this theorem is difficult and goes beyond the scope of this book. We nevertheless decided to write down a proof, but this proof will only be given in Ch
发表于 2025-3-24 12:22:24 | 显示全部楼层
发表于 2025-3-24 18:26:49 | 显示全部楼层
发表于 2025-3-24 19:48:34 | 显示全部楼层
Piecewise continuous symbols,bols of the local representatives, we will completely identify the essential spectra of Toeplitz operators with piecewise continuous symbols. We know from the preceding chapter that the essential spectrum of a classical Toeplitz operator is the union of the essential range of the symbol and of line
发表于 2025-3-25 01:26:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 08:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表