找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Capacities in Complex Analysis; Urban Cegrell Book 1988 Springer Fachmedien Wiesbaden 1988 Extremwert.Funktionentheorie.Operator.algorithm

[复制链接]
楼主: 军械
发表于 2025-3-23 11:47:02 | 显示全部楼层
发表于 2025-3-23 14:01:00 | 显示全部楼层
发表于 2025-3-23 19:18:47 | 显示全部楼层
https://doi.org/10.1007/978-3-031-36690-1Let U be an open, bounded and connected subset of ₵. containing zero. Then H(U) (H∞(U)) is the class of (bounded) analytic functions on U and A(U) consists of the functions in H(U) that extends continuously to Ū. If μ is a positive measure on ∂U we define H.(μ,∂U) (1≤p<+∞) to be the closure of A(U) in L.(μ,∂U).
发表于 2025-3-23 23:10:33 | 显示全部楼层
https://doi.org/10.1007/978-3-031-36690-1We keep the notation from Section X.
发表于 2025-3-24 05:32:55 | 显示全部楼层
https://doi.org/10.1007/978-3-031-36690-1In the last section, we saw that one could assign “boundary values” to certain analytic functions by considering closed extensions of the restriction operator.
发表于 2025-3-24 08:55:09 | 显示全部楼层
Capacities,Let U be a σ-compact Hausdorff-space. A . c on U is a set function defined on P(U), the subsets of U, with the following properties:
发表于 2025-3-24 13:21:26 | 显示全部楼层
Outer Regularity,In this section, we assume S to be a compact and metric space.
发表于 2025-3-24 16:28:56 | 显示全部楼层
Outer Regularity (Cont.),In this section, we continue our study of outer regularity but in a more special situation. Many problems in complex function theory are related to outer regular capacities — in particular outer regularity of zero sets. We therefore proceed as follows.
发表于 2025-3-24 21:27:26 | 显示全部楼层
,Further Properties of the Monge-Ampère Operator,Let B be the unit ball in (₵. and let P be the restriction to ̄B of all negative plurisubharmonic functions on RB where R>1. We saw in Section V that F=−P and δ, the Lebesgue measure on B, give rise to two natural capacities . and . where . and where M is defined to be the weak*-closed convex set of positive measures μ on B such that
发表于 2025-3-24 23:14:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 04:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表