找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: CR Submanifolds of Complex Projective Space; Mirjana Djoric,Masafumi Okumura Book 2010 Springer-Verlag New York 2010 CR Submanifolds.Comp

[复制链接]
楼主: 涌出
发表于 2025-3-23 12:46:53 | 显示全部楼层
发表于 2025-3-23 17:09:59 | 显示全部楼层
Hypersurfaces of a sphere with parallel shape operator,ch satisfy a certain condition. The condition that the shape operator is parallel is its special case. In this section we give the proof of this classification (in the specific case .) and furthermore, we show that the algebraic condition (13.5) on the shape operator implies that it is parallel.
发表于 2025-3-23 20:21:29 | 显示全部楼层
发表于 2025-3-23 23:42:36 | 显示全部楼层
CR submanifolds of maximal CR dimension,position 7.8 let us suppose that the ambient space is a complex manifold . equipped with a Hermitian metric .. If . is an .-dimensional CR submanifold of maximal CR dimension of ., then at each point . of ., the real dimension of . is ..
发表于 2025-3-24 05:51:57 | 显示全部楼层
Real hypersurfaces of a complex projective space,. is the distinguished normal vector field, used to define the almost contact structure . on ., induced from the almost complex structure . of .. Moreover, since a real hypersurface . of a Kähler manifold . has two geometric structures: an almost contact structure . and a submanifold structure repre
发表于 2025-3-24 07:46:05 | 显示全部楼层
发表于 2025-3-24 11:32:15 | 显示全部楼层
978-1-4614-2477-2Springer-Verlag New York 2010
发表于 2025-3-24 15:53:15 | 显示全部楼层
Mirjana Djoric,Masafumi OkumuraPresents many recent developments and results in the study of CR submanifolds not previously published.Provides a self-contained introduction to complex differential geometry.Provides relevant techniq
发表于 2025-3-24 22:00:41 | 显示全部楼层
发表于 2025-3-25 00:44:58 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 20:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表