找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data Analytics and Knowledge Discovery; 26th International C Robert Wrembel,Silvia Chiusano,Ismail Khalil Conference proceedings 2024 T

[复制链接]
查看: 28375|回复: 56
发表于 2025-3-21 18:01:52 | 显示全部楼层 |阅读模式
期刊全称Big Data Analytics and Knowledge Discovery
期刊简称26th International C
影响因子2023Robert Wrembel,Silvia Chiusano,Ismail Khalil
视频video
学科分类Lecture Notes in Computer Science
图书封面Titlebook: Big Data Analytics and Knowledge Discovery; 26th International C Robert Wrembel,Silvia Chiusano,Ismail Khalil Conference proceedings 2024 T
影响因子.This book constitutes the proceedings of the 26th International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2024, which too place in Naples, Italy, during August 26-28, 2024. ..The 16 full and 20 short papers included in this book were carefully reviewed and selected from 83 submissions. They were organized in topical sections as follows: Modeling and design; entity matching and similarity; classification; machine learning methods and applications; time series; data repositories;optimization; and data quality and applications. .
Pindex Conference proceedings 2024
The information of publication is updating

书目名称Big Data Analytics and Knowledge Discovery影响因子(影响力)




书目名称Big Data Analytics and Knowledge Discovery影响因子(影响力)学科排名




书目名称Big Data Analytics and Knowledge Discovery网络公开度




书目名称Big Data Analytics and Knowledge Discovery网络公开度学科排名




书目名称Big Data Analytics and Knowledge Discovery被引频次




书目名称Big Data Analytics and Knowledge Discovery被引频次学科排名




书目名称Big Data Analytics and Knowledge Discovery年度引用




书目名称Big Data Analytics and Knowledge Discovery年度引用学科排名




书目名称Big Data Analytics and Knowledge Discovery读者反馈




书目名称Big Data Analytics and Knowledge Discovery读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:56:47 | 显示全部楼层
发表于 2025-3-22 04:23:07 | 显示全部楼层
Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry the process industry are a novel contribution in this field. This study aims to address these gaps by (1) systematically analyzing the modelling methodologies (e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for D
发表于 2025-3-22 05:35:56 | 显示全部楼层
MultiMatch: Low-Resource Generalized Entity Matching Using Task-Conditioned Hyperadapters in Multitah task before computing the overall loss. Empirically, we observe regulatory effects on the model’s variance. Lastly, we analyze the carbon impact of fine-tuning different systems. Results are promising: our approach generalizes over eight GEM benchmarking tasks while reducing . emissions by 85.0%.
发表于 2025-3-22 10:36:11 | 显示全部楼层
发表于 2025-3-22 15:07:37 | 显示全部楼层
发表于 2025-3-22 21:07:20 | 显示全部楼层
发表于 2025-3-22 22:44:01 | 显示全部楼层
Exploring Causal Chain Identification: Comprehensive Insights from Text and Knowledge Graphsate the semantic continuity of chains within established knowledge graphs, we curate a chain-structured dataset, highlighting both causal relations and multiple non-causal relations, i.e. . and ., termed .. We noticed that the longer the chains, the fewer instances of existence. However, contrary to
发表于 2025-3-23 03:03:59 | 显示全部楼层
Improving Serendipity for Collaborative Metric Learning Based on Mutual Proximityalled collaborative metric learning. The proposed method improves existing techniques by refining the embedding space search algorithm, reducing the bias toward popular items in recommendations without altering the original embedding space, thereby enabling users to achieve serendipity. Furthermore,
发表于 2025-3-23 06:24:08 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 23:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表