找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bézier and B-Spline Techniques; Hartmut Prautzsch,Wolfgang Boehm,Marco Paluszny Textbook 2002 Springer-Verlag Berlin Heidelberg 2002 B-spl

[复制链接]
楼主: credit
发表于 2025-3-25 04:09:07 | 显示全部楼层
发表于 2025-3-25 08:22:50 | 显示全部楼层
发表于 2025-3-25 12:33:21 | 显示全部楼层
Bézier techniques for triangular patches simple task to derive algorithms which evaluate, degree elevate, reparametrize, or subdivide a triangular surface in Bézier representation. The generalization of the techniques described for univariate polynomials in Chapter 3 is straightforward.
发表于 2025-3-25 16:22:39 | 显示全部楼层
发表于 2025-3-25 23:20:13 | 显示全部楼层
Stationary subdivision for arbitrary netsk presented a similar generalization for bicubic splines. Their algorithms can be applied to arbitrary quadrilateral control nets and yield sequences of control nets that converge to piecewise biquadratic or bicubic surfaces with finitely many so-called extraordinary points.
发表于 2025-3-26 02:40:06 | 显示全部楼层
发表于 2025-3-26 06:11:01 | 显示全部楼层
https://doi.org/10.1057/978-1-349-95269-4en univariate and symmetric multivariate polynomials is explained and the basic CAGD algorithms based on this relationship are presented. The most important algorithm is de Casteljaués. It has several applications and serves as an important theoretical tool.
发表于 2025-3-26 09:12:01 | 显示全部楼层
Stephen Hutchings,Kenzie Burchellcal or only complicated descriptions are known. To construct such a representation, one usually measures or evaluates a given curve at a number of points and determines an interpolant or approximant. This chapter reviews some basic techniques.
发表于 2025-3-26 15:04:29 | 显示全部楼层
发表于 2025-3-26 18:55:11 | 显示全部楼层
Jason R. Finley,Farah Naaz,Francine W. Gohuence, there are simple efficient knot insertion algorithms to convert a B-spline representation to a B-spline representation over a finer and also evenly spaced knot sequence. Moreover, these algorithms are the prototypes for the class of the so-called ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 18:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表