找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Business Intelligence; 7th International Co Mohamed Fakir,Mohamed Baslam,Rachid El Ayachi Conference proceedings 2022 Springer Nature Switz

[复制链接]
楼主: 阿谀奉承
发表于 2025-3-28 16:47:50 | 显示全部楼层
1865-1348 y were organized in topical sections as follows: decision support and artificial intelligence; business intelligence and database; and optimization and dynamic programming..978-3-031-06457-9978-3-031-06458-6Series ISSN 1865-1348 Series E-ISSN 1865-1356
发表于 2025-3-28 21:36:41 | 显示全部楼层
https://doi.org/10.1007/978-3-642-54484-2ted and compared on the Intracranial Hemorrhage Dataset that contains 2814 images. The results show that the detection accuracy of Transfer Learning with Inception V3, which achieves 88.97%, is superior to that of the Convolutional neural network.
发表于 2025-3-29 01:53:33 | 显示全部楼层
发表于 2025-3-29 05:01:28 | 显示全部楼层
Mark Eisenegger,Mario Schranz,Angelo GislerCS-MC4 algorithms are presented. These algorithms are evaluated using Recall, precision and F-measure. Experimental results show that AD-Tree is faster and present higher accuracy than the other classifier using a Diabetes data set.
发表于 2025-3-29 10:43:27 | 显示全部楼层
发表于 2025-3-29 15:12:05 | 显示全部楼层
发表于 2025-3-29 18:33:42 | 显示全部楼层
发表于 2025-3-29 21:11:46 | 显示全部楼层
Facial Expression Recognition Using a Hybrid ViT-CNN AggregatorN architecture when merged by different merging layers. The proposed approach is tested on the FER2013 and CK+ data sets. Experimental results demonstrate the high performance of the Average Merging Layer (AML), and our method outperforms state-of-the-art methods on FER2013 and CK+.
发表于 2025-3-30 00:22:29 | 显示全部楼层
发表于 2025-3-30 04:50:55 | 显示全部楼层
How far can Deep Learning Improve Arabic Part of Speech Tagging? develop POS taggers for the Arabic language. After multiple exclusion steps 12 articles were selected for a full review. Results show that Long Short-Term Memory (LSTM) and its extension Bidirectional LSTM (Bi-LSTM) models are the most used DL techniques for Arabic POS tagging, and they give better results according to the reviewed papers.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 12:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表