找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Branched Standard Spines of 3-manifolds; Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In

[复制链接]
查看: 36945|回复: 47
发表于 2025-3-21 16:11:47 | 显示全部楼层 |阅读模式
期刊全称Branched Standard Spines of 3-manifolds
影响因子2023Riccardo Benedetti,Carlo Petronio
视频video
学科分类Lecture Notes in Mathematics
图书封面Titlebook: Branched Standard Spines of 3-manifolds;  Riccardo Benedetti,Carlo Petronio Book 1997 Springer-Verlag Berlin Heidelberg 1997 Calc.Finite.In
影响因子This book provides a unified combinatorial realization of the categroies of (closed, oriented) 3-manifolds, combed 3-manifolds, framed 3-manifolds and spin 3-manifolds. In all four cases the objects of the realization are finite enhanced graphs, and only finitely many local moves have to be taken into account. These realizations are based on the notion of branched standard spine, introduced in the book as a combination of the notion of branched surface with that of standard spine. The book is intended for readers interested in low-dimensional topology, and some familiarity with the basics is assumed. A list of questions, some of which concerning relations with the theory of quantum invariants, is enclosed.
Pindex Book 1997
The information of publication is updating

书目名称Branched Standard Spines of 3-manifolds影响因子(影响力)




书目名称Branched Standard Spines of 3-manifolds影响因子(影响力)学科排名




书目名称Branched Standard Spines of 3-manifolds网络公开度




书目名称Branched Standard Spines of 3-manifolds网络公开度学科排名




书目名称Branched Standard Spines of 3-manifolds被引频次




书目名称Branched Standard Spines of 3-manifolds被引频次学科排名




书目名称Branched Standard Spines of 3-manifolds年度引用




书目名称Branched Standard Spines of 3-manifolds年度引用学科排名




书目名称Branched Standard Spines of 3-manifolds读者反馈




书目名称Branched Standard Spines of 3-manifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:12:55 | 显示全部楼层
发表于 2025-3-22 03:56:14 | 显示全部楼层
发表于 2025-3-22 05:37:58 | 显示全部楼层
发表于 2025-3-22 09:49:16 | 显示全部楼层
https://doi.org/10.1007/BFb0093620Calc; Finite; Invariant; Topological manifolds; calculus; cohomology; computation; differential equations; d
发表于 2025-3-22 14:32:13 | 显示全部楼层
发表于 2025-3-22 20:39:33 | 显示全部楼层
发表于 2025-3-23 00:58:18 | 显示全部楼层
发表于 2025-3-23 04:06:57 | 显示全部楼层
9楼
发表于 2025-3-23 06:24:42 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 12:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表