找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Third International Alessandro Crimi,Spyridon Bakas,Mauricio

[复制链接]
楼主: 面临
发表于 2025-3-28 15:18:07 | 显示全部楼层
发表于 2025-3-28 19:23:42 | 显示全部楼层
Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation Using Holistic Convolutioused as a loss function for training convolutional neural networks (CNN). Although CNNs trained using mean-class Dice score achieve state-of-the-art results on multi-class segmentation, this loss function does neither take advantage of inter-class relationships nor multi-scale information. We argue
发表于 2025-3-28 23:09:45 | 显示全部楼层
Overall Survival Time Prediction for High Grade Gliomas Based on Sparse Representation Framework imaging-based survival prediction generally relies on some features guided by clinical experiences, which limits the full utilization of biomedical image. In this paper, we propose a sparse representation-based radiomics framework to predict overall survival (OS) time of HGG. Firstly, we develop a
发表于 2025-3-29 04:57:34 | 显示全部楼层
发表于 2025-3-29 10:16:37 | 显示全部楼层
Pairwise, Ordinal Outlier Detection of Traumatic Brain Injuriesa model is challenging to construct. Instead, we utilize region-specific pairwise (person-to-person) comparisons. Each person-region is characterized by a distribution of Fractional Anisotropy and comparisons are made via Median, Mean, Bhattacharya and Kullback-Liebler distances. Additionally, we ex
发表于 2025-3-29 14:47:46 | 显示全部楼层
发表于 2025-3-29 15:53:18 | 显示全部楼层
发表于 2025-3-29 23:45:45 | 显示全部楼层
Deep Learning Based Multimodal Brain Tumor Diagnosisto address the challenges of multimodal brain tumor segmentation. The proposed multi-view deep learning framework (MvNet) uses three multi-branch fully-convolutional residual networks (Mb-FCRN) to segment multimodal brain images from different view-point, i.e. slices along x, y, z axis. The three su
发表于 2025-3-30 01:53:31 | 显示全部楼层
Multimodal Brain Tumor Segmentation Using Ensemble of Forest Methodngle forest, we proposed two stage ensemble method for Multimodal Brain Tumor Segmentation problem. Identification of Tumor region and its sub-regions poses challenge in terms of variations in intensity, location etc. from patient to patient. We identify the initial region of interest (ROI) by linea
发表于 2025-3-30 07:53:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 02:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表