找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Synchronization for Hyperbolic Systems; Tatsien Li,Bopeng Rao Book 2019 Springer Nature Switzerland AG 2019 Partial Differential

[复制链接]
楼主: Washington
发表于 2025-3-25 05:58:18 | 显示全部楼层
发表于 2025-3-25 08:19:26 | 显示全部楼层
Low-Level Radio Frequency SystemsIn the case of partial lack of boundary controls, we consider the exact boundary synchronization and the non-exact boundary synchronization in this chapter for system (II) with Neumann boundary controls.
发表于 2025-3-25 12:35:10 | 显示全部楼层
发表于 2025-3-25 17:37:44 | 显示全部楼层
Thomas D. Bostock,Ralph G. ScurlockWhen system (II) possesses the exact boundary synchronization by .-groups, the corresponding exactly synchronizable states by .-groups will be studied in this chapter.
发表于 2025-3-25 20:04:40 | 显示全部楼层
Introduction and Overview,An introduction and overview of the whole book can be found in this chapter.
发表于 2025-3-26 00:33:50 | 显示全部楼层
发表于 2025-3-26 08:23:19 | 显示全部楼层
Exact Boundary Controllability and Non-exact Boundary ControllabilitySince the exact boundary synchronization on a finite time interval is closely linked with the exact boundary null controllability, we first consider the exact boundary null controllability and the non-exact boundary null controllability for system (I) of wave equations with Dirichlet boundary controls in this chapter.
发表于 2025-3-26 09:06:43 | 显示全部楼层
Exact Boundary Synchronization and Non-exact Boundary SynchronizationIn the case of partial lack of boundary controls, we consider the exact boundary synchronization and the non-exact boundary synchronization in this chapter for system (I) with Dirichlet boundary controls.
发表于 2025-3-26 16:33:02 | 显示全部楼层
Exactly Synchronizable StatesWhen system (I) possesses the exact boundary synchronization, the corresponding exactly synchronizable states will be studied in this chapter.
发表于 2025-3-26 19:46:07 | 显示全部楼层
Exact Boundary Synchronization by GroupsThe exact boundary synchronization by groups will be considered in this chapter for system (I) with further lack of Dirichlet boundary controls.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 13:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表