找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boundary Crossing of Brownian Motion; Its Relation to the Hans Rudolf Lerche Book 1986 Springer-Verlag Berlin Heidelberg 1986 Brownian mot

[复制链接]
楼主: hormone-therapy
发表于 2025-3-23 10:20:44 | 显示全部楼层
Boundary Crossing of Brownian Motion978-1-4615-6569-7Series ISSN 0930-0325 Series E-ISSN 2197-7186
发表于 2025-3-23 16:29:54 | 显示全部楼层
Louis XIV and his Fellow Monarchsointed out that it is also possible to construct a stopping time with the properties (1.1) and (1.2) from a smooth prior. This can be done by stopping when the posterior mass of a neighbourhood of θ=0 becomes too small.
发表于 2025-3-23 18:17:13 | 显示全部楼层
https://doi.org/10.1007/978-1-349-15659-7 parameter and choose it as “cθ.”, c>0. We show that a certain simple Bayes rule, which defines a repeated significance test, is optimal for the testing problem in a Bayes sense. The simple Bayes rules stop sampling when the posterior mass of the hypothesis or the alternative is too small.
发表于 2025-3-23 22:52:47 | 显示全部楼层
发表于 2025-3-24 05:27:27 | 显示全部楼层
Louis XIV and the Edict of NantesFor the method of images the first exit density of Brownian motion over the boundary ψ.(t) according to Theorem 1.2 can be expressed as . with ..
发表于 2025-3-24 08:02:06 | 显示全部楼层
Fiscalism and Public Opinion under Louis XIVLet ψ(t) denote an increasing and continuously differentiable function. Let T=inf{t>0 | W(t)≧ψ(t)} denote the first exit time of the standard Brownian motion W(t) over ψ(t) with T=. of the infimum is taken over the empty set. Let P(T>0)=1 and let p(t) denote the density of the distribution of T.
发表于 2025-3-24 11:08:37 | 显示全部楼层
发表于 2025-3-24 15:48:18 | 显示全部楼层
发表于 2025-3-24 20:11:32 | 显示全部楼层
Louis XIV’s Methods in Foreign PolicyWe consider the problem stated in (1.1): for every 0<γ<1 and c>0 find a stopping rule T.* which minimizes the risk
发表于 2025-3-25 01:09:19 | 显示全部楼层
IntroductionLet W(t) denote the standard Brownian motion. Khintchine’s law of the iterated logarithm states that almost surely ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 23:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表