找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[复制链接]
查看: 26520|回复: 38
发表于 2025-3-21 16:22:56 | 显示全部楼层 |阅读模式
期刊全称Boosted Statistical Relational Learners
期刊简称From Benchmarks to D
影响因子2023Sriraam Natarajan,Kristian Kersting,Jude Shavlik
视频video
发行地址Includes supplementary material:
学科分类SpringerBriefs in Computer Science
图书封面Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014
影响因子This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
Pindex Book 2014
The information of publication is updating

书目名称Boosted Statistical Relational Learners影响因子(影响力)




书目名称Boosted Statistical Relational Learners影响因子(影响力)学科排名




书目名称Boosted Statistical Relational Learners网络公开度




书目名称Boosted Statistical Relational Learners网络公开度学科排名




书目名称Boosted Statistical Relational Learners被引频次




书目名称Boosted Statistical Relational Learners被引频次学科排名




书目名称Boosted Statistical Relational Learners年度引用




书目名称Boosted Statistical Relational Learners年度引用学科排名




书目名称Boosted Statistical Relational Learners读者反馈




书目名称Boosted Statistical Relational Learners读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:42 | 显示全部楼层
发表于 2025-3-22 04:28:36 | 显示全部楼层
发表于 2025-3-22 07:24:25 | 显示全部楼层
发表于 2025-3-22 09:23:27 | 显示全部楼层
发表于 2025-3-22 16:13:12 | 显示全部楼层
发表于 2025-3-22 19:07:14 | 显示全部楼层
发表于 2025-3-23 00:37:19 | 显示全部楼层
Boosted Statistical Relational Learners978-3-319-13644-8Series ISSN 2191-5768 Series E-ISSN 2191-5776
发表于 2025-3-23 05:03:48 | 显示全部楼层
发表于 2025-3-23 09:03:06 | 显示全部楼层
Palgrave European Film and Media Studiesrning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 13:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表