找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Block Designs: A Randomization Approach; Volume II: Design Tadeusz Caliński,Sanpei Kageyama Book 2003 Springer-Verlag New York, Inc. 2003 V

[复制链接]
楼主: Ingrown-Toenail
发表于 2025-3-23 09:58:37 | 显示全部楼层
发表于 2025-3-23 13:58:38 | 显示全部楼层
978-0-387-95470-7Springer-Verlag New York, Inc. 2003
发表于 2025-3-23 21:23:27 | 显示全部楼层
发表于 2025-3-24 01:01:58 | 显示全部楼层
发表于 2025-3-24 04:32:29 | 显示全部楼层
https://doi.org/10.1007/978-3-531-91041-3f treatment parameters. In the terminology introduced in Chapter 4 (Section 4.4) and recalled at the beginning of Chapter 6, this means that various cases of (.;.,…,.; 0)-EB designs, with . = 1,2,3 and more, for which . ≥ 1, will be of interest. The chapter begins with a general consideration on suc
发表于 2025-3-24 10:26:45 | 显示全部楼层
Lernübertragungen in der Sportpädagogik. Taking into account the practical point of view, the cases of (0;.,.,…,.;0)-EB designs, with . = 2, 3 and more, will be considered. At first, a general consideration on such designs is presented in Section 8.1, by recalling relevant results discussed in Volume I and by providing some corresponding
发表于 2025-3-24 12:15:19 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-6505-0eplicates one or more at a time. The present chapter is devoted only to those among (α,α., …,α.)-resolvable block designs which are a-resolvable for α ≥ 1, according to the concepts discussed in Section 6.0.3. A 1-resolvable block design is simply called resolvable in the usual sense of Bose (1942a)
发表于 2025-3-24 15:24:24 | 显示全部楼层
发表于 2025-3-24 19:21:40 | 显示全部楼层
https://doi.org/10.1007/978-3-531-91041-3roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
发表于 2025-3-25 02:55:14 | 显示全部楼层
Designs with Full Efficiency for Some Contrasts,roper and nonequireplicate, (iii) nonproper and equireplicate and (iv) nonproper and nonequireplicate, first for . = 1 (Section 7.2), then for . = 2 (Section 7.3), then for . = 3 (Section 7.4), and finally for . ≥ 3 (Section 7.5).
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-9 21:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表