找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bioinformatics and Computational Biology; First International Sanguthevar Rajasekaran Conference proceedings 2009 Springer-Verlag Berlin H

[复制链接]
楼主: interleukins
发表于 2025-3-25 06:48:57 | 显示全部楼层
Gene Networks Viewed through Two Modelsynamic Bayesian network model with nonparametric regression. These methods are applied to gene expression data based on gene knockdowns and drug responses for generating large global maps of gene regulation which will light up the geography where drug target pathways lie down.
发表于 2025-3-25 10:03:35 | 显示全部楼层
发表于 2025-3-25 13:30:47 | 显示全部楼层
Edward M. Lenoe,Wenzel E. Davidsohn. Coupled with continuously decreasing sequencing costs, HTS data provides opportunities to study genome structure, function, and evolution at an unprecedented scale, and is profoundly transforming biomedical research.
发表于 2025-3-25 17:57:32 | 显示全部楼层
K.-L. Weißkopf,J. Lorenz,G. Petzowynamic Bayesian network model with nonparametric regression. These methods are applied to gene expression data based on gene knockdowns and drug responses for generating large global maps of gene regulation which will light up the geography where drug target pathways lie down.
发表于 2025-3-25 21:27:46 | 显示全部楼层
https://doi.org/10.1007/978-3-642-00727-9LA; bioinformatics; biology; genetics; genome; life sciences; sequence analysis
发表于 2025-3-26 00:48:55 | 显示全部楼层
发表于 2025-3-26 05:34:56 | 显示全部楼层
E. Gugel,H. Kessel,N. Müller,E. Langeg techniques of k-nearest neighbor and support vector machine for predicting phosphorylation sites. Test results on the PhosPhAt dataset of phosphoserines in . and the TAIR7 non-redundant protein database show good performance of our proposed phosphorylation site prediction method.
发表于 2025-3-26 12:06:31 | 显示全部楼层
发表于 2025-3-26 13:03:01 | 显示全部楼层
A New Machine Learning Approach for Protein Phosphorylation Site Prediction in Plantsg techniques of k-nearest neighbor and support vector machine for predicting phosphorylation sites. Test results on the PhosPhAt dataset of phosphoserines in . and the TAIR7 non-redundant protein database show good performance of our proposed phosphorylation site prediction method.
发表于 2025-3-26 19:24:19 | 显示全部楼层
Generalized Binary Tanglegrams: Algorithms and Applications, (ii) provide efficient algorithms for the case when the layout of one tree is fixed, (iii) discuss the fixed parameter tractability and approximability of the GTL problem, (iv) formulate heuristic solutions for the GTL problem, and (v) evaluate our algorithms experimentally.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 02:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表