找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bilinear Regression Analysis; An Introduction Dietrich von Rosen Book 2018 Springer International Publishing AG, part of Springer Nature 20

[复制链接]
楼主: 相似
发表于 2025-3-25 06:58:50 | 显示全部楼层
发表于 2025-3-25 07:43:12 | 显示全部楼层
发表于 2025-3-25 12:44:00 | 显示全部楼层
https://doi.org/10.1007/978-981-13-3699-7 approach is extended to cover tensor space decompositions which is a basic tool when considering bilinear regression models. The decompositions are illustrated in figures where one can follow how maximum likelihood estimators are obtained by projecting on appropriate subspaces.
发表于 2025-3-25 19:23:39 | 显示全部楼层
Issues Decisive for China’s Rise or Fallsitions of the tensor space where within-individuals spaces also have an inner product which has to be estimated. All obtained estimators have explicit forms. A short literature review of bilinear regression models is given.
发表于 2025-3-25 22:09:18 | 显示全部楼层
Energy Security and Territorial Disputesrived for all estimators as well as the covariance among the estimators from the same model. Calculations use knowledge about the matrix normal, Wishart and inverted Wishart distributions. It is shown that the estimators are asymptotically equivalent to normally distributed random variables.
发表于 2025-3-26 00:27:59 | 显示全部楼层
发表于 2025-3-26 05:09:22 | 显示全部楼层
https://doi.org/10.1007/978-981-13-3699-7gression models several natural residuals appear. The residuals are obtained by applying space decompositions of the tensor product of the between-individual and within-individual spaces. Density approximations are performed for the residuals. To obtain the distribution of the large residuals a para
发表于 2025-3-26 11:28:01 | 显示全部楼层
发表于 2025-3-26 14:26:04 | 显示全部楼层
发表于 2025-3-26 20:31:02 | 显示全部楼层
https://doi.org/10.1007/978-981-13-3699-7A short introduction to bilinear regression analysis is presented. The statistical paradigm is introduced. Moreover, bilinear regression models are presented together with a number of examples. Some historical remarks on the material of the book are given.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 03:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表