找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Bildverarbeitung für die Medizin 2023; Proceedings, German Thomas M. Deserno,Heinz Handels,Thomas Tolxdorff Conference proceedings 2023 De

[复制链接]
楼主: metamorphose
发表于 2025-3-25 05:25:05 | 显示全部楼层
Keynote: Fully Automated Bone Removal in CBCT of the Lower Body Stem,wer body stem, which includes the abdomen and pelvis, does not have a BRM for cone beam CT (CBCT). This frequently necessitates the interventionist doing a manual BRM, particularly in the pelvic area, as in the case of a prostate embolization, necessitating his exit from the interventional room.The
发表于 2025-3-25 07:39:49 | 显示全部楼层
发表于 2025-3-25 13:29:09 | 显示全部楼层
发表于 2025-3-25 16:55:02 | 显示全部楼层
发表于 2025-3-25 22:44:45 | 显示全部楼层
Abstract: Shape-based Segmentation of Retinal Layers and Fluids in OCT Image Data,ecades. Based on its high-resolution cross-sectional images, OCT supports diagnosis of various eye diseases. For clinical examination and treatment planning, automated segmentation of individual retinal layers and pathologies is helpful. Retinal layers follow a strict topology that is not addressed
发表于 2025-3-26 01:25:14 | 显示全部楼层
发表于 2025-3-26 07:04:10 | 显示全部楼层
Abstract: Liver Tumor Segmentation in Late-phase MRI using Multi-model Training and an Anisotropic on deep learning-based liver tumor segmentation have focused on contrast-enhanced CT, however dynamic contrastenhanced MRI (DCE-MRI) can yield a higher sensitivity. In this work , we demonstrate the deep learning-based segmentation of liver tumors in the late hepatocellular phase of DCE-MRI. In part
发表于 2025-3-26 08:30:42 | 显示全部楼层
Automatic Vertebrae Segmentation in MR Volumes,ome popular in segmenting the spine in computed tomography (CT) volumes. However, few options have been tested for magnetic resonance (MR) imaging segmentation. In this paper, we provide a comparison of three deep learning methods tackling the automatic vertebrae segmentation in MR volumes.We select
发表于 2025-3-26 14:59:04 | 显示全部楼层
发表于 2025-3-26 18:40:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 19:02
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表