找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data Imperatives; Enterprise Big Data Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa Book 2013 Soumendra Mohanty and Madhu Jagadees

[复制链接]
查看: 18026|回复: 35
发表于 2025-3-21 18:33:11 | 显示全部楼层 |阅读模式
期刊全称Big Data Imperatives
期刊简称Enterprise Big Data
影响因子2023Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa
视频video
发行地址Vendors and platforms agnostic there by bringing in deep understanding of key areas viz.,.Big data platforms.Implementation best practices, etc;.Numerous industry use cases about big data and its impl
图书封面Titlebook: Big Data Imperatives; Enterprise Big Data  Soumendra Mohanty,Madhu Jagadeesh,Harsha Srivatsa Book 2013 Soumendra Mohanty and Madhu Jagadees
影响因子.Big Data Imperatives., focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications?.Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use..This book addresses the following big data characteristics:. .Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible . .Petabytes/Exabytes of data . .Millions/billions of people providing/contributing to the context behind the data . .Flat schema‘s with few complex interrelationships . .Involves time-stamped events . .Made up of incomplete data . .Includes connections between data elements that must be probabilistically inferred .Big Data Imperatives. explains ‘what big data can do‘. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis w
Pindex Book 2013
The information of publication is updating

书目名称Big Data Imperatives影响因子(影响力)




书目名称Big Data Imperatives影响因子(影响力)学科排名




书目名称Big Data Imperatives网络公开度




书目名称Big Data Imperatives网络公开度学科排名




书目名称Big Data Imperatives被引频次




书目名称Big Data Imperatives被引频次学科排名




书目名称Big Data Imperatives年度引用




书目名称Big Data Imperatives年度引用学科排名




书目名称Big Data Imperatives读者反馈




书目名称Big Data Imperatives读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:43:18 | 显示全部楼层
发表于 2025-3-22 03:56:24 | 显示全部楼层
发表于 2025-3-22 05:43:44 | 显示全部楼层
发表于 2025-3-22 09:12:48 | 显示全部楼层
J. C. E. Underwood MD, MRCPath.Big data is baffling, and analytics are complex. Together, big data analytics make a difficult and complex undertaking largely because technology architectures and methodologies are immature.
发表于 2025-3-22 15:41:44 | 显示全部楼层
发表于 2025-3-22 20:52:39 | 显示全部楼层
发表于 2025-3-22 21:16:44 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-3387-6ent of mainframes to client server to ERP and now everything digital. For years the overwhelming amount of data produced was deemed useless. But data has always been an integral part of every enterprise, big or small. As the importance and value of data to an enterprise became evident, so did the pr
发表于 2025-3-23 02:51:29 | 显示全部楼层
etc;.Numerous industry use cases about big data and its impl.Big Data Imperatives., focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it
发表于 2025-3-23 08:28:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 20:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表