找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Big Data Analytics and Knowledge Discovery; 25th International C Robert Wrembel,Johann Gamper,Ismail Khalil Conference proceedings 2023 The

[复制链接]
楼主: 出租车
发表于 2025-3-26 21:55:29 | 显示全部楼层
发表于 2025-3-27 04:20:40 | 显示全部楼层
Using Ontologies as Context for Data Warehouse Quality Assessmentty is context-dependent and this fact should be considered in its management. This work is a step forward to a general mechanism for assessing Data Quality in Data Warehouse considering data context. In addition to presenting our general approach, in this paper we propose two particular data quality
发表于 2025-3-27 05:21:58 | 显示全部楼层
Preventing Technical Errors in Data Lake Analyses with Type Theoryicle, we present a formal framework based on type theory to prevent technical errors in such compositions of operators. This framework uses restrictions on type definitions to transform technical errors into type errors. We show how to use this framework to prevent errors related to schema or model
发表于 2025-3-27 09:37:49 | 显示全部楼层
发表于 2025-3-27 15:51:46 | 显示全部楼层
发表于 2025-3-27 19:35:51 | 显示全部楼层
发表于 2025-3-28 01:09:03 | 显示全部楼层
Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregationsnancial institutions. Existing solutions utilize solely transaction attributes as feature representations without the consideration of direct/indirect interactions between users and transactions, leading to limited accuracy. We formulate anomaly detection in financial transactions as the problem of
发表于 2025-3-28 03:31:34 | 显示全部楼层
发表于 2025-3-28 07:28:11 | 显示全部楼层
Hypergraph Embedding Based on Random Walk with Adjusted Transition Probabilitiesnce into a skip-gram used in natural language processing, a vector representation that captures the graph structure can be obtained. We propose a random walk method with adjustable transition probabilities for hypergraphs. As a result, we argue that it is possible to embed graph features more approp
发表于 2025-3-28 14:15:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 15:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表